Железная руда металл. Железные руды – основа современного производства

Железной рудой называются природные минеральные образования, которые содержат железо в больших количествах и таких химических соединениях, что его извлечение возможно и целесообразно. Важнейшими являются: магнетит, магномагнетит, титаномагнетит, гематит, гидрогематит, гётит, гидрогётит, сидерит, железистые хлориты. Железные руды различаются по минеральному составу, содержанию железа, полезных и вредных примесей, условиям образования и промышленным свойствам.

Железные руды разделяют на богатые (более 50% железа), рядовые (50-25%) и бедные (менее 25% железа) В зависимости от химического состава их применяют для выплавки чугуна в естественном виде или после обогащения. Железные руды, использующиеся для производства стали, должны содержать определённые вещества в необходимых пропорциях. От этого зависит качество получаемого продукта. Некоторые химические элементы (помимо железа) могут извлекаться из руды и использоваться для других целей.

Месторождения железной руды разделяют по происхождению. Обычно выделяют 3 группы: магматогенные, экзогенные и метаморфогенные. Они могут подразделяться ещё на несколько групп. Магматогенные образуются в основном при воздействии на различные соединения высоких температур. Экзогенные месторождения возникли в долинах при отложении осадков и выветривании горных пород. Метаморфогенные месторождения — ранее существовавшие осадочные месторождения, преобразовавшиеся в условиях высоких и температур. Наибольшее количество железной руды сосредоточено на территории России.

Крупнейшие в России:

Бакчарское железорудное месторождение

Это месторождение является одним из крупнейших подобных месторождений железной руды в России и мире. Оно находится на территории Томской области в междуречье рек Андорма и Икса. Месторождение было открыто случайно при разведке месторождений в 1960-х годах.

Бакчаровское железорудное месторождение занимает площадь в 16 тысяч км2. Железорудные образования находятся на глубине от 190 до 220 метров. Руды содержат до 57 % железа, а также примеси других химических элементов (фосфора, ванадия, палладия, золота и платины). Содержание железа в обогащённой руде достигает 95-97 %. Запасы железной руды на данной территории оцениваются в 28,7 миллиардов тонн.

В настоящее время внедряются новые технологии разработки месторождений. Добычу руды предполагается вести не карьерным способом, а с помощью скважинной гидродобычи.

Абагасское железорудное месторождение

Абагасское железорудное месторождение располагается в Красноярском крае в 186 км к западу от города Абакан на территории и . Месторождении было открыто ещё в 1933 году, но разработка его началась только 50 лет спустя. Руды здесь в основном магнетитовые, высокоглинозёмистые, магнезиальные.

Главным рудным минералом здесь является магнетит, а второстепенные - мушкетовит, гематит, пирит.

Абагасское железорудное месторождение делят на две зоны: Южная (длина свыше 2600 м) и Северная (2300 м). Балансовые запасы железных руд составляют свыше 73 миллионов тонн. Разработка ведётся открытым способом. Суммарная среднегодовая добыча 4,4 миллионов тонн руды с содержанием железа 28,4%.

Абаканское железорудное месторождение

Абаканское железорудное месторождение располагается в Хакасии, у города Абаза.Располагается в северо-восточных отрогах . Открыто в 1856 году, первоначально носило название «Абаканская благодать». После открытия разработка руд велась периодически.С 1947 по 1959 были построены предприятия по добыче и обогащению руд. С 1957 по 1962 месторождение разрабатывалось открытым способом, а затем подземным (шахта глубиной 400 м).

Абаканское — месторождение магнетитовых руд. Здесь содержится: магнетит, актинолит, хлорит, кальцит, андезит и кобальтосодержащий пирит.

Разведанные запасы руды со средним содержанием железа 41,7 - 43,4% с примесью цинка и серы составляют 140 миллионов тонн. Среднегодовая добыча 2,4 миллионов тонн. Промышленный продукт содержит около 47,5% железа. Центры добычи и переработки - города Абаза, Абакан, Новокузнецк.

Курская магнитная аномалия

Курская магнитная аномалия самый мощный в мире железорудный бассейн. Залежи руды на её территории оцениваются в 200-210 миллиардов тонн, что составляет около 50 % железорудных запасов на планете. Она располагается в основном на территории Курской, Белгородской и Орловской областей.

В настоящее время границы Курской магнитной аномалии охватывают площадь размером свыше 160 тысяч км2, захватывая территории девяти областей Центра и Юга страны. Перспективные запасы богатых железных руд уникального бассейна составляют многие миллиарды тонн, а железистых кварцитов - практически неисчерпаемы.

Магнитная аномалия в этом районе была открыта ещё в XVIII веке, но о возможной её причине – залежах магнитной руды, учёные заговорили лишь в прошлом веке. Богатые руды были открыты в 1931 году. Площадь около 120 тысяч км2. Руды: магнетитовые кварциты, богатые железные руды в коре выветривания железистых кварцитов. Запасы железистых кварцитов свыше 25 миллиардов тонн с содержанием железа 32-37 % и свыше 30 миллиардов тонн богатых руд (52-66 % железа). Месторождения разрабатываются как открытым, так и подземным способами.

В состав Курской магнитной аномалии входят Приоскольское железорудное месторождение и Чернянское железорудное месторождение.


Железную руду человек начал добывать еще в конце II тысячелетия до нашей эры, уже тогда определив для себя преимущества железа по сравнению с камнем. С тех времен люди стали различать виды железных руд, хотя они еще не имели тех названий, что сегодня.

В природе железо - один из самых распространенных элементов, и в земной коре его содержится по разным данным от четырех до пяти процентов. Это четвертое место по содержанию после кислорода, кремния и алюминия.

Железо представлено не в чистом виде, оно в большем или меньшем количестве содержится в разного вида горных породах. И если по расчетам специалистов добывать железо из такой породы целесообразно и выгодно экономически, ее называют железной рудой.

За последние несколько столетий, на протяжении которых очень активно выплавляется сталь и чугун, железные руды истощаются - ведь металла требуется все больше и больше. Например, если в XVIII веке, на заре промышленной эры руды могли содержать и 65% железа, то сейчас нормальным считается содержание в руде 15 процентов элемента.

Из чего состоит железная руда.

В состав руды входит рудный и рудообразующий минералы, различные примеси и пустая порода. Соотношение этих составляющих отличается от месторождения к месторождению.

Рудный материал содержит главную массу железа, а пустая порода - это минеральные отложения, содержащие железо в очень малых количествах или не содержащие вовсе.

Оксиды, силикаты и карбонаты железа - самые часто встречающиеся рудные минералы железных руд.

Виды железной руды по содержанию железа и по местообразованию.

  • С низким содержанием железа или сепарированную железную руду, ниже 20%
  • Со средним содержанием железа или аглоруду
  • Железосодержащая масса или окатыши - породы с высоким содержанием железа, выше 55%

Железные руды могут быть линейными - то есть залегающие в местах разломов и изгибов земной коры. Именно они наиболее богаты железом и содержат мало фосфора и серы.

Другой вид железных руд - плоскоподобные, которые содержатся на поверхности железосодержащих кварцитов.

Красные, бурые, желтые, черные железняки.

Самым распространенным видом руды является красный железняк, который образуется безводным оксидом железа гематитом, имеющим химическую формулу Fe 2 O 3 . В гематите содержится очень высокий процент железа (до 70 процентов) и мало посторонних примесей, в частности серы и фосфора.

Красные железняки могут находиться в разном физическом состоянии - от плотного до пылевого.

Бурый железняк - это водная окись железа Fe 2 O 3 *nH 2 O. Число n может изменяться в зависимости от основы, составляющей руду. Чаще всего это лимониты. Бурые железняки, в отличие от красных, содержат меньше железа - 25-50 процентов. Их структура рыхлая, пористая, а в руде много других элементов, среди которых - фосфор и марганец. В бурых железняках содержится много адсорбированной влаги, пустая же порода - глинистая. Свое название этот вид руды получил из-за характерного бурого или желтоватого цвета.

Но несмотря на довольно низкое содержание железа, из-за легкой восстановимости перерабатывать такую руду легко. Из них часто выплавляют высокачественный чугун.

Бурый железняк чаще всего нуждается в обогащении.

Магнитными рудами называют те, которые образованы магнетитом, являющимся магнитным оксидом железа Fe 3 O 4. Название подсказывает, что эти руды имеют магнитные свойства, которые утрачиваются при нагревании.

Магнитные железняки реже встречаются, чем красные. Но железа в них может содержаться даже свыше 70 процентов.

По своей структуре он может быть плотным и зернистым, может выглядеть как кристаллы, вкрапленные в породу. Цвет магнетита - черно-синий.

Еще один вид руды, который называется шпатовым железняком. Ее рудосодержащей составляющей является карбонат железа с химическим составом FeCO 3 под названием сидерит. Другое название - глинистый железняк - это если в руде содержится значительное количество глины.

Шпатовые и глинистые железняки встречаются в природе реже других руд и содержат относительно немного железа и много пустой породы. Сидериты могут преобразовываться в бурые железняки под влиянием кислорода, влаги и осадков. Поэтому залежи выглядят так: в верхних слоях это бурый железняк, а в нижних - шпатовый железняк.

Содержание железа в промышленных рудах от 16 до 72%. Среди полезных примесей Ni, Co, Mn, W, Mo, Cr, V и др., среди вредных — S, R, Zn, Pb, As, Cu. железных руд по генезису подразделяются на , и (см. карту).

Основные железные руды

Промышленные типы железных руд классифицируются по преобладающему рудному минералу . Магнетитовые руды сложены магнетитом (иногда магнезиальным — магномагнетитом, нередко мартитизированы — превращены в гематит в процессе окисления). Они наиболее характерны для карбонатитовых, скарновых и гидротермальных месторождений . Из карбонатитовых месторождений попутно извлекают апатит и бадделеит , из скарновых — кобальтсодержащий пирит и сульфиды цветных металлов. Особую разновидность магнетитовых руд представляют комплексные (Fe-Ti-V) титаномагнетитовые руды магматических месторождений . Гематитовые руды, сложенные главным образом гематитом, в меньшей степени магнетитом, распространены в коре выветривания железистых кварцитов (мартитовые руды), в скарновых, гидротермальных и вулканогенно-осадочных рудах. Богатые гематитовые руды содержат 55-65% Fe и до 15-18% Mn. Сидеритовые руды подразделяются на кристаллические сидеритовые руды и глинистые шпатовые железняки; они часто магнезиальны (магносидериты). Встречаются в гидротермальных, осадочных и вулканогенно-осадочных месторождениях. Среднее содержание в них Fe 30-35%. После обжига сидеритовых руд, в результате удаления CO 2 , получают тонкопористые железооксидные концентраты , содержащие 1-2%, иногда до 10% Mn. В зоне окисления сидеритовые руды превращаются в бурые железняки. Силикатные железные руды сложены железистыми хлоритами ( , лептохлорит и др.), сопровождающимися гидрооксидами железа, иногда . Образуют осадочные залежи. Среднее содержание в них Fe 25-40%. Примесь серы незначительна, фосфора до 1%. Часто имеют оолитовую текстуру. В коре выветривания превращаются в бурые, иногда в красные (гидрогематитовые) железняки. Бурые железняки сложены гидрооксидами железа, чаще всего гидрогётитом. Образуют осадочные залежи (морские и континентальные) и месторождения коры выветривания. Осадочные руды часто имеют оолитовую текстуру. Среднее содержание Fe в рудах 30-35%. В бурых железняках некоторых месторождений (Бакальское в CCCP, Бильбао в Испании и др.) содержится до 1-2% Mn и более. В природно-легированных бурых железняках, образовавшихся в корах выветривания ультраосновных пород, содержится 32-48% Fe, до 1% Ni, до 2% Cr, сотые доли процента Co, V. Из таких руд без добавок выплавляются хромоникелевые чугуны и низколегированная сталь. ( , железистые ) — бедные и средние по содержанию железа (12-36%) метаморфизованные железные руды, сложенные тонкими чередующимися кварцевыми, магнетитовыми, гематитовыми, магнетит- гематитовыми и сидеритовыми прослоями, местами с примесью силикатов и карбонатов. Отличаются низким содержанием вредных примесей (S и R — сотые доли процента). Месторождения этого типа обычно обладают уникальными (свыше 10 млрд. т) или крупными (свыше 1 млрд. т) запасами руды. В коре выветривания кремнезём выносится, и возникают крупные залежи богатых гематито-мартитовых руд.

Наибольшие запасы и объёмы добычи приходятся на докембрийские железистые кварциты и образованные по ним богатые железные руды, менее распространены осадочные бурожелезняковые руды, а также скарновые, гидротермальные и карбонатитовые магнетитовые руды.

Обогащение железной руды

Различают богатые (свыше 50% Fe) и бедные (меньше 25% Fe) руды, требующие . Для качественной характеристики богатых руд важное значение имеет содержание и соотношение нерудных примесей (шлакообразующих компонентов), выражающимся коэффициентом основности и кремневым модулем. По величине коэффициент основности (отношение суммы содержаний оксидов кальция и магния к сумме оксидов кремния и ) железных руд и их концентраты подразделяются на кислые (менее 0,7), самофлюсующиеся (0,7-1,1) и основные (более 1,1). Лучшими являются самофлюсующиеся руды: кислые руды по сравнению с основными требуют введения в доменную шихту повышенного количества известняка (флюса). По кремневому модулю (отношение содержаний оксида кремния к оксиду алюминия) использование железных руд ограничивается типами руд с модулем ниже 2. К бедным рудам, требующим обогащения, относятся титаномагнетитовые, магнетитовые, а также магнетитовые кварциты с содержанием Fe магнетитового свыше 10-20%; мартитовые, гематитовые и гематитовые кварциты с содержанием Fe более 30%; сидеритовые, гидрогётитовые и гидрогётит-лептохлоритовые руды с содержанием Fe более 25%. Нижний предел содержаний Fe общего и магнетитового для каждого месторождения с учётом его масштабов , горнотехнических и экономических условий устанавливается кондициями.

Руды, требующие обогащения, подразделяются на легкообогатимые и труднообогатимые, что зависит от их минерального состава и текстурно-структурных особенностей. К легкообогатимым рудам относятся магнетитовые руды и магнетитовые кварцы , к труднообогатимым - железные руды, в которых железо связано со скрытокристаллическими и коллоидальными образованиями, в них при измельчении не удаётся раскрыть рудные минералы из-за их крайне мелких размеров и тонкого прорастания с нерудными минералами. Выбор способов обогащения определяется минеральным составом руд, их текстурно-структурными особенностями, а также характером нерудных минералов и физико-механическими свойствами руд. Магнетитовые руды обогащаются магнитным способом. Применение сухой и мокрой магнитной сепарации обеспечивает получение кондиционных концентратов даже при сравнительно низком содержании железа в исходной руде. При наличии в рудах промышленных содержаний гематита наряду с магнетитом применяется магнитно-флотационный (для тонковкрапленных руд) или магнитно-гравитационный (для крупновкрапленных руд) способы обогащения. Если в магнетитовых рудах содержится в промышленных количествах апатит или сульфиды , меди и цинка , минералы бора и другие, то для их извлечения из отходов магнитной сепарации применяется флотация . Схемы обогащения титаномагнетитовых и ильменит-титаномагнетитовых руд включают в себя многостадиальную мокрую магнитную сепарацию. С целью выделения ильменита в титановый концентрат проводится обогащение отходов мокрой магнитной сепарации флотацией или гравитационным способом с последующей магнитной сепарацией в поле высокой интенсивности.

Схемы обогащения магнетитовых кварцитов включают дробление , измельчение и магнитное обогащение в слабом поле. Обогащение окисленных железистых кварцитов может производится магнитным (в сильном поле), обжигмагнитным и флотационным способами. Для обогащения гидрогётит-лептохлоритовых оолитовых бурых железняков используется гравитационный или гравитационно-магнитный (в сильном поле) способ, ведутся также исследования по обогащению этих руд обжигмагнитным способом. Глинистые гидрогётитовые и (валунчатые) руды обогащаются промывкой . Обогащение сидеритовых руд обычно достигается обжигом. При переработке железистых кварцитов и скарново-магнетитовых руд обычно получают концентраты с содержанием Fe 62-66%; в кондиционных концентратах мокрой магнитной сепарации из апатит-магнетитовых и магномагнетитовых руд железа не менее 62-64%; для электрометаллургического передела выпускаются концентраты с содержанием Fe не ниже 69,5%, SiO 2 не более 2,5%. Концентраты гравитационного и гравитационно-магнитного обогащения оолитовых бурых железняков считаются кондиционными при содержании Fe 48-49%; по мере совершенствования методов обогащения требования к концентратам из руд повышаются.

Большая часть железных руд используется для выплавки чугуна. Небольшое количество служит природными красками (охры) и утяжелителями буровых глинистых растворов .

Запасы железной руды

По запасам железных руд (балансовым — свыше 100 млрд. т) CCCP занимает 1-е место в мире. Наиболее крупные запасы железных руд в CCCP сосредоточены на Украине, в центральных районах РСФСР, в Северном Казахстане, на Урале, в западной и восточной Сибири . Из общего количества разведанных запасов железных руд 15% — богатых, не требующих обогащения, 67% — обогащаемых по простым магнитным схемам, 18% — требующих сложных методов обогащения.

KHP , КНДР и CPB обладают значительным запасами железных руд, достаточными для развития собственной чёрной металлургии. См. также

ГЛАВА 7. ГРУППЫ РУДНЫХ МИНЕРАЛОВ ПО ФИЗИЧЕСКИМ СВОЙСТВАМ. ДИАГНОСТИЧЕСКИЕ СВОЙСТВА ЭТАЛОННЫХ МИНЕРАЛОВ. ТАБЛИЦЫ-ОПРЕДЕЛИТЕЛИ.

СТАНДАРТНЫЕ СХЕМЫ ИССЛЕДОВАНИЯ

РУДНОГО МИНЕРАЛА И АНШЛИФА

Из большого числа рудных минералов можно выделить характерные соединения трех типов: самородные элементы (металлы), сульфиды и подобные им соединения и окислы – соединения металлов с кислородом. Они значительно отличаются по физическим свойствам, что облегчает диагностику.

1. Самородные элементы, такие как, Au, Ag, Fe, Cu, Pt обладают физическими свойствами идеальных металлов, т.е. ковкостью, тягучестью, металлическим блеском (непрозрачностью для света), проводимостью тепла и электричества, высокой плотностью. Свойства их обусловлены, прежде всего, металлическим типом электронной связи между атомами. Тип связи определяет строение кристаллических решеток и оптические свойства. Для рудных минералов важными свойствами являются отражательная способность и твердость. Самородные металлы являются, как правило, наиболее высокоотражающими объектами и имеют низкую твердость. К числу типичных рудных минералов относится также гексагональная модификация самородного углерода – графит, отличающийся низким отражением.

2. Сульфиды, такие как: галенит – PbS, сфалерит – ZnS, миллерит –NiS, киноварь – HgS, пирротин – FeS, ковеллин – CuS – не обладают свойствами металлов. Они в основном хрупкие, слабо проводят электрический ток, обладают средней отражательной способностью, некоторые частично пропускают свет. Электронные связи между химическими элементами, входящими в кристаллические решетки сульфидов, имеют ионный или смешанный типы, что и обусловливает резкое различие их оптических свойств. Многие сульфиды обладают широкой анизотропией физических свойств, в том числе твердости и отражательной способности. В эту группу рудных минералов относятся также многочисленные селенистые, теллуристые, мышьяковистые и сурьмянистые соединения, среди которых много важных в промышленном отношении минералов.

3. Окислы, например магнетит – Fe 2+ Fe 3+ 2 O 4 , гематит – Fe 2 O 3 , рутил – TiO 2 , куприт – Cu 2 O, ильменит – FeTiO 3 , хромит – FeCr 2 O 4 , еще больше отличаются от металлов отсутствием пластичности, электропроводности. Окислы, как правило, отличаются низкой отражательной способностью и высокой твердостью. Многие окислы пропускают свет. Типы химических связей в окислах различны, что обусловливает их широкие различия в физических свойствах.

Роль самородных металлов, сульфидов и окислов в образовании месторождений различна. Самородные металлы исключительно редко образуют месторождения, а сульфиды и окислы являются главными компонентами многочисленных месторождений.

Наиболее важные рудные минералы, образующие месторождения:

Самородные элементы:

Кобальтин – CoAsS

Лëллингит –FeAs 2

Серебро – Ag

Арсенопирит – FeAsS

Золото – Au

Платина – Pt

Блеклые руды: теннантит – Cu 12 As 4 S 13 – тетраэдрит – Cu 12 Sb 4 S 13

Углерод – С (Графит)

Прустит – Ag 3 AsS 3

Пираргирит – Ag 3 SbS 3

Буланжерит – Pb 5 Sb 4 S 11

Сульфиды и подобные им соединения:

Окислы и другие кислородные соединения:

Халькозин – Cu 2 S

Куприт – Cu 2 O

Галенит – PbS

Гематит – α-Fe 2 O 3

Сфалерит – ZnS

Ильменит – FeTiO 3

Киноварь – HgS

Браунит – Mn 2 O 3

Пирротин – Fe 1-x S

Шпинель – MgAl 2 O 4

Никелин – NiAs

Магнетит – FeFe 2 O 4

Миллерит – NiS

Хромшпинелиды – (Mg,Fe)(Cr,Al,Fe) 2 O 4

Пентландит – (FeNi) 9 S 8

Рутил – TiO 2

Халькопирит – CuFeS 2

Касситерит – SnO 2

Борнит – Cu 5 FeS 4

Колумбит – (Fe,Mn)Nb 2 O 6 – танталит – (Fe,Mn)Ta 2 O 6

Кубанит – CuFe 2 S 3

Пиролюзит – MnO 2

Ковеллин – CuS

Лопарит – (Na,Ce,Ca)(Nb,Ti)O 3

Аурипигмент – As 2 S 3

Гетит – гидрогетит

– HFeO 2 ,- HFeO 2 ž ag

Стибнит – Sb 2 S 3

Псиломелан – mMnO ž MnO 2 ž nH 2 O

Висмутин – Bi 2 S 3

Малахит – Cu 2 2

Молибденит – MoS 2

Вольфрамит – (Mn,Fe)WO 4

Пирит – FeS 2

Шеелит – CaWO 4

Сперрилит – PtAs 2

Циркон – ZrSiO 4

К эталонным минералам относятся: пирит, галенит, блеклые руды, сфалерит. Диагностические свойства их приведены в табл. 1.

Таблица 1

Диагностические свойства эталонных минералов

Химический состав

Сингония

Отражение

Серо-белый с оливково-коричневым оттенком

Светло-желтый

Анизотропия

Изотропен

Изотропен

Изотропен

Изотропен

Внутренние рефлексы

Бесцветные, желтые, буро-красные

Коричнево-красные

Отсутствуют

Отсутствуют

Твердость

153–270 кГ/мм 2

308-397 кГ/мм 2

64-110 кГ/мм 2

1374 кГ/мм 2

Полируемость

Посредствен-ная, при длительном полировании хорошая.

Формы зерен, внутреннее строение

Зернистые агрегаты, но индивиды не видны, можно выявить травлением. Характерны полисинтетиче-ские двойники.

Зернистые агре-

гаты, травлением можно выявить зональность в кристаллах.

Зернистые агрегаты, совершенная спайность, треугольные выколки.

Зернистые агрегаты, кристаллы кубических и пентагон-додекаэдрич форм.

Часто встречающиеся совместно минералы

Халькопирит, галенит, блеклые руды, пирротин

Халькопирит, сфалерит, галенит, арсенопирит

Сфалерит, пирит, халькопирит, минералы серебра и др.

Марказит, халькопирит, сфалерит, золото и др.

Магнитность

Немагнитен

Немагнитен

Немагнитен

Немагнитен

Важно усвоить свойства этих минералов, для того чтобы на практике легко их узнавать и использовать для диагностики других минералов. Главное достоинство предлагаемой группы эталонов заключается в широкой распространенности в различных месторождениях, устойчивости их свойств, стандартных цветах, силе отражения и др. Например, уменьшение коэффициента отражения в ряду: пирит-галенит-блеклая руда-сфалерит происходит в интервале 10–15 %, что соответствует интервалу восприимчивости глаза. Это позволяет легко по «методу контакта» ориентироваться в справочных таблицах. Также закономерно возрастает микротвердость в ряду: галенит-сфалерит-блеклая руда-пирит, (от 2.5 до 6.5), что позволяет использовать примитивную схему определения групп твердости по «методу царапания». На примере эталонов усваиваются такие диагностические свойства как эталонные цвета: белый (галенит) и серый (сфалерит), «внутреннее строение» (треугольники выкрошивания у галенита) и «внутренние рефлексы» (сфалерит и блеклая руда) и др.

Свойства других минералов, включенных в курс «Рудная минераграфия» приведены в форме стандартных таблиц-определителей.

Пример работы с таблицей-определителем

В качестве примера рассмотрим таблицу С.А. Юшко и В.В. Иванова (Приложение 4), приведенную в работе С.А. Юшко «Методы лабораторного исследования руд» (1984). Таблица составлена с использованием основных физических свойств рудных минералов, которые студент определяет в лабораторных условиях. Представленные в таблице минералы разбиты на 36 групп в зависимости от свойств.

Рекомендуется, прежде всего, определить характер анизотропии минерала. По этому признаку минералы делятся на две большие группы. Точное определение анизотропности позволит резко ограничить круг поиска минерала.

Далее следует определить степень отражения. В каждой группе как изотропных, так и анизотропных минералов, первая вертикальная графа слева имеет обозначение: «Отражение». Она разделена на три подраздела (снизу вверх): «равная сфалериту и меньше», «равная галениту и меньше» и «больше галенита». Примерное определение коэффициента отражения по эталонам позволяет ограничить поиск минерала до 3-7 групп.

Определение цвета минерала в отраженном свете не представляет большой трудности, но решает еще одну задачу - отделяет «ясно окрашенные» минералы, которых, к примеру, среди анизотропных минералов, не так много. Это свойство обозначено во второй вертикальной графе таблицы: «Окраска минерала».

Следующая вертикальная графа – «Внутренние рефлексы в порошке», позволяет выделить минералы с ясно выраженными внутренними рефлексами, что особено важно в группах бесцветных минералов.

Последняя графа перед определение номера диагностической группы – «Твердость». Определение твердости студентами выполняется в

кабинетных условиях быстро двумя способами. По методу царапания медной и стальной иглами определяется класс твердости: «высокая», «средняя» и «низкая». На микротвердометре МПТ-3 уточняется значение микротвердости.

Определение диагностической группы сужает поиск минерала, но еще не решает окончательно задачу определения. Некоторые группы являются весьма сложными по набору минералов, например №№ 7, 10, 15, 22 и др. Далее следует использовать все дополнительные свойства по справочникам: морфология зерен, внутреннее строение, парагенетические ассоциации, цветовые оттенки, и др. Большую помощь могут оказать микрохимические реации, при наличии набора стандартных реактивов. Определение некоторых минералов может быть уверенным только путем анализа химического состава и рентгенограммы.

Стандартные схемы исследования рудного минерала и аншлифа

Схема исследования минерала :

1. Оценивается коэффициент отражения (относительно эталонов) или измеряется на спектрофотометре.

2. Определяются: цвет, анизотропия, двуотражение, цветные эффекты, наличие внутренних рефлексов, микротвердость методом царапания.

3. Проверяется наличие магнитности.

4. Изучается форма и внутреннее строение зерен.

5. По таблице свойств определяется минерал и группа аналогов.

6. По справочникам уточняются признаки и делается выбор.

7. Если определение затруднено, то уточняется микротвердость на приборе ПМТ-3 и по таблице твердости минералов еще раз определяется минерал.

8. В случае если минерал не удалось определить по табличным данным:

– готовят образец для микрозондового анализа для уточнения химического состава;

– готовят препарат для рентгеновского изучения.

Схема описания аншлифа:

1. Определяется макроскопически текстура образца.

2. Определяется полный минеральный состав под микроскопом.

3. Количество минеральных фаз и их объем:

– главные минералы (> 1 %);

– второстепенные минералы(< 1 %);

– редкие минералы (единичные зерна).

4. Измеряются размеры зерен всех минералов.

5. Выделяются закономерные срастания парагенезисы и ассоциации.

6. Анализируются возрастные взаимоотношения между минералами и ассоциациями.

7.Определяется последовательность образования, составляется ее схема.

8.Определяется структура, тип оруденения.

9.Делается заключение о генезисе.

10. Намечаются места для иллюстрации доказательств.

Железная руда представляют собой особое минеральное образование, включающее железо, а также его соединения. Руду считают железной в том случае, если она содержит этот элемент в достаточных объемах для того, чтобы было экономически выгодно его извлекать.

Основной разновидностью железной руды является магнитный железняк. Он содержит почти 70% окиси и закиси железа. Эта руда имеет черный или серо-стальной цвет. на территории России добывают на Урале. Встречается он в недрах Высокая, Благодать и Качканар. На территории Швеции его находят в окрестностях Фалуня, Даннемора и Гелливара. В США - это Пенсильвания, а в Норвегии - Арендаль и Персберг.

В черной металлургии железорудную продукцию разделяют на три вида:

Сепарированную железную руду (с низким содержанием железа);

Аглоруду (со средним содержанием железа);

Окатыши (сырую железосодержащую массу).

Морфологические типы

Богатыми считаются такие залежи железной руды, которые содержат более 57% железа в своем составе. К бедным рудам относят те, в которых не менее 26% железа. Ученые разделили железную руду на два морфологических типа: линейный и плоскоподобный.

Железная руда линейного типа представляет собой рудные клиновидные тела в зонах изгибов и земных разломов. Данный тип отличается особенно большим содержанием железа (от 50 до 69%), но сера и фосфор в такой руде содержится в небольшом количестве.

Плоскоподобные залежи встречаются на вершинах пластов железистых кварцитов, которые представляют собой типовую кору выветривания.

Железная руда. Применение и добыча

Богатая железная руда применение находит для получения чугуна и в основном идет на выплавку в конвертерное и мартеновское производство или же непосредственно на восстановление железа. Небольшое количество используется как природная краска (охра) и утяжелитель глинистых

Объем мировых запасов разведанных месторождений составляют 160 млрд. тонн, а железа в них содержится около 80 млрд. тонн. Железная руда найдена на Украине, а самыми крупными запасами чистого железа обладают Россия и Бразилиия.

Объемы мировой добычи руды растут с каждым годом. В большинстве случаев железная руда добывается открытым методом, суть которого заключается в том, что всю нужную технику доставляют к месторождению, и там же строят карьер. Глубина карьера составляет в среднем около 500 м, а его диаметр зависит от особенностей найденного месторождения. После этого при помощи специального оборудования добывают железную руду, складывают на машины, приспособленные для перевозки тяжелых грузов, и доставляют из карьера на предприятия, которые занимаются переработкой.

Недостатком открытого метода является возможность добывать руду только на небольшой глубине. Если же она лежит намного глубже, приходится возводить шахты. Вначале делают ствол, напоминающий глубокий колодец с хорошо укрепленными стенками. В разные стороны от ствола отходят коридоры, так называемые штреки. Найденную в них руду взрывают, а потом ее куски поднимают на поверхность с помощью особого оборудования. Добыча железной руды таким способом эффективна, но связана с серьезной опасностью и затратами.

Существует еще другой способ, при помощи которого добывают железную руду. Его называют СГД или скважинной гидродобычей. Руда извлекается из-под земли таким образом: бурят скважину, опускают в нее трубы с гидромонитором и очень мощной водной струей дробят породу, которую потом поднимают на поверхность. Добыча железной руды этим способом безопасна, однако, к сожалению, неэффективна. Так удается добыть лишь 3% руды, а 70% добывается с помощью шахт. Однако разработка метода СГД совершенствуется, и есть большая вероятность, что в будущем этот вариант станет основным, вытеснив шахты и карьеры.