Предмет изучения микробиологии. Микроорганизмы, их свойства

Введение

Микробиология (от греч. micros - малый, bios -жизнь, logos - учение) -наука, изучающая строение, жизнедеятельность и экологию микроорганизмов мельчайших форм жизни растительного или животного происхождения, не видимых невооруженным глазом.

Микробиология изучает всех представителей микромира (бактерии, грибы, простейшие, вирусы). По своей сути микробиология является биологической фундаментальной наукой. Для изучения микроорганизмов она использует методы других наук, прежде всего физики, биологии, биоорганической химии, молекулярной биологии, генетики, цитологии, иммунологии. Как и всякая наука, микробиология подразделяется на общую и частную. Общая микробиология изучает закономерности строения и жизнедеятельности микроорганизмов на всех уровнях. молекулярном, клеточном, популяционном; генетику и взаимоотношения их с окружающей средой. Предметом изучения частной микробиологии являются отдельные представители микромира в зависимости от проявления и влияния их на окружающую среду, живую природу, в том числе человека. К частным разделам микробиологии относятся: медицинская, ветеринарная, сельскохозяйственная, техническая (раздел биотехнологии), морская, космическая микробиология.

Медицинская микробиология изучает патогенные для человека микроорганизмы: бактерии, вирусы, грибы, простейшие. В зависимости от природы изучаемых патогенных микроорганизмов медицинская микробиология делится на бактериологию, вирусологию, микологию, протозоологию.

Каждая из этих дисциплин рассматривает следующие вопросы:

морфологию и физиологию, т.е. осуществляет микроскопические и другие виды исследований, изучает обмен веществ, питание, дыхание, условия роста и размножения, генетические особенности патогенных микроорганизмов;

роль микроорганизмов в этиологии и патогенезе инфекционных болезней;

основные клинические проявления и распространенность вызываемых заболеваний;

специфическую диагностику, профилактику и лечение инфекционных болезней;

экологию патогенных микроорганизмов.

К медицинской микробиологии относят также санитарную, клиническую и фармацевтическую микробиологию.

Санитарная микробиология изучает микрофлору окружающей среды, взаимоотношение микрофлоры с организмом, влияние микрофлоры и продуктов ее жизнедеятельности на состояние здоровья человека, разрабатывает мероприятия, предупреждающие неблагоприятное воздействие микроорганизмов на человека. В центре внимания клинической микробиологии. Роль условно-патогенных микроорганизмов в возникновении заболеваний человека, диагностика и профилактика этих болезней.

Фармацевтическая микробиология исследует инфекционные болезни лекарственных растений, порчу лекарственных растений и сырья под действием микроорганизмов, обсемененность лекарственных средств в процессе приготовления, а также готовых лекарственных форм, методы асептики и антисептики, дезинфекции при производстве лекарственных препаратов, технологию получения микробиологических и иммунологических диагностических, профилактических и лечебных препаратов.

Ветеринарная микробиология изучает те же вопросы, что и медицинская микробиология, но применительно к микроорганизмам, вызывающим болезни животных.

Микрофлора почвы, растительного мира, влияние ее на плодородие, состав почвы, инфекционные заболевания растений и т.д. находятся в центре внимания сельскохозяйственной микробиологии.

Морская и космическая микробиология изучает соответственно микрофлору морей и водоемов и космического пространства и других планет.

Техническая микробиология, являющаяся частью биотехнологии, разрабатывает технологию получения из микроорганизмов разнообразных продуктов для народного хозяйства и медицины (антибиотики, вакцины, ферменты, белки, витамины). Основа современной биотехнологии - генетическая инженерия.

История развития микробиологии

Микробиология прошла длительный путь развития, исчисляющийся многими тысячелетиями. Уже в V.VI тысячелетии до н.э. человек пользовался плодами деятельности микроорганизмов, не зная об их существовании. Виноделие, хлебопечение, сыроделие, выделка кож. не что иное, как процессы, проходящие с участием микроорганизмов. Тогда же, в древности, ученые и мыслители предполагали, что многие болезни вызываются какими-то посторонними невидимыми причинами, имеющими живую природу.

Следовательно, микробиология зародилась задолго до нашей эры. В своем развитии она прошла несколько этапов, не столько связанных хронологически, сколько обусловленных основными достижениями и открытиями.

ЭВРИСТИЧЕСКИЙ ПЕРИОД (IV III вв. до н.э. XVI в.) Связан скорее с логическими и методическими приемами нахождения истины, то есть эвристикой, чем с какимилибо экспериментами и до казательствами. Мыслители этого периода (Гиппократ, римский писатель Варрон, Авиценна и др.) высказывали предположения о природе заразных болезней, миазмах, мелких невидимых животных. Эти представления были сформулированы в стройную гипотезу спустя многие столетия в сочинениях итальянского врача Д. Фракасторо (1478 1553 гг.), высказавшего идею о живом контагии (contagiumvivum), который вызывает болезни. При этом каждая болезнь вызывается своим контагием. Для предохранения от болезней им были рекомендованы изоляция больного, карантин, ноше ние масок, обработка предметов уксусом.

МОРФОЛОГИЧЕСКИЙ ПЕРИОД (XVII ПЕРВАЯ ПОЛОВИНА XIX вв.) Начинается с открытия микроорганизмов А. Левенгуком. На этом этапе было подтверждено повсеместное распространение микроорганизмов, описаны формы клеток, характер движения, места обитания многих представителей микромира. Окончание этого периода знаменательно тем, что накопленные к этому времени знания о микроорганизмах и научно методический уровень (в частности, наличие микроскопической техники) позволили ученым разрешить три очень важные (основные) для всех естественных наук проблемы: изучение природы процессов брожения и гниения, причины возникновения инфекционных заболеваний, проблему само зарождения микроорганизмов.

Изучение природы процессов брожения и гниения. Термин «брожение» (fermentatio) для обозначения всех процессов, идущих с выделени ем газа, впервые употребил голландский алхимик Я.Б. Гельмонт (1579-1644 гг.). Многие ученые пытались дать определение этому процессу и объяснить его. Но ближе всех к пониманию роли дрожжей в процессе брожения подошел французский химик А.Л. Лавуазье (1743 1794 гг.) при изучении количественных химических превращений сахара при спиртовом брожении, но он не успел завершить свою работу, так как стал жертвой террора французской буржуазной революции.

Многие ученые изучали процесс брожения, но к заключению о связи процессов брожения с жизнедеятельностью микроскопических живых существ одновременно, независимо друг от друга пришли французский ботаник Ш. Каньяр де Латур (исследовал осадок при спиртовом брожении и обнаружил живых существ), немецкие естествоиспытатели Ф. Кютцинг (при образовании уксуса обратил внимание на слизистую пленку на поверхности, которая также состоя ла из живых организмов) и Т. Шванн. Но их исследования были подверг нуты суровой критике сторонниками теории физикохимической природы брожения. Их обвинили в «легкомыслии в выводах» и отсутствии доказательств. Вторая основная проблема о микробной природе инфекционных заболеваний также была решена в морфологический период развития микробиологии.

Первыми высказали предположения о том, что заболевания вызывают невидимые существа, древнегреческий врач Гиппократ (ок. 460 377 гг. до н.э.), Авиценна (ок. 980 1037 гг.) и др. Несмотря на то, что появление болезней теперь уже связывалось с открытыми микроорганизмами, необходимы были прямые доказательства. И они были полу ченырусским врачом эпидемиологом Д.С. Самойловичем (1744 1805 гг.). Микроскопы того времени имели увеличение примерно в 300 раз и не позволяли обнаружить возбудителя чумы, для выявления которого, как сейчас известно, необходимо увеличение в 800 1000 раз. Чтобы доказать, что чума вызывается особым возбудителем, он заразил себя отделяемым бубона больного чумой человека и заболел чумой.

К счастью, Д.С. Самойлович остался жив. Впоследствии героические опыты по само заражению для доказательства заразности того или иного микроорганизма провели русские врачи Г.Н. Минх и О.О. Мочутковский, И.И. Мечников и др. Но приоритет в решении вопроса о микробной природе инфекционных заболеваний принадлежит итальянскому естествоиспытателю А. Баси (1773 1856 гг.), который впервые экспериментально установил микробную природу заболевания шелковичных червей, он обнаружил передачу болезни при переносе микроскопического грибка от больной особи к здоровой. Но большинство исследователей были убеждены в том, что причинами всех заболеваний являются нарушения течения химических процессов в организме. Третья проблема о способе появления и размножения микроорганизмов была решена в споре с господствовавшей тогда теорией самозарождения.

Несмотря на то, что итальянский ученый Л. Спалланцанив се редине XVIII в. наблюдал под микроскопом деление бактерий, мнение о том, что они самозарождаются (возникают из гнили, грязи и т.д.), не было опровергнуто. Это было сделано выдающимся французским ученым Луи Пастером (1822 1895 гг.), который своими работами положил начало со временной микробиологии. В этот же период начиналось развитие микробиологии в России. Основоположником русской микробиологии является Л.Н. Ценковский (1822 1887 гг.). Объекты его исследований простейшие, водоросли, грибы. Он открыл и описал большое число простейших, изучил их морфологию и циклы развития, показал, что нет резкой границы между миром растений и животных. Им была организована одна из первых пастеровских станций в России и предложена вакцина против сибирской язвы (живая вакцина Ценковского).

ФИЗИОЛОГИЧЕСКИЙ ПЕРИОД (ВТОРАЯ ПОЛОВИНА XIX в.)

Бурное развитие микробиологии в XIX в. привело к открытию многих микроорганизмов: клубеньковых бактерий, нитрифицирующих бактерий, возбудителей многих инфекционных болезней (сибирская язва, чума, столбняк, дифтерия, холера, туберкулез и др.), вируса табачной мозаики, вируса ящура и др. Открытие новых микроорганизмов сопровождалось изучением не только их строения, но и их жизнедеятельности, то есть на смену морфологосистематическому изучению первой половины XIX в. пришло физиологическое изучение микроорганизмов, основанное на точном эксперименте.

Поэтому вторую половину XIX в. принято называть физиологическим периодом в развитии микробиологии. Этот период характеризуется выдающимися открытиями в области микробиологии, и его без преувеличения можно было бы назвать в честь гениального французского ученого Л. Пастера Пастеровским, потому что научная деятельность этого ученого охватывала все основные проблемы, связанные с жизнедеятельностью микроорганизмов. Подробнее об основ ных научных открытиях Л. Пастера и их значении для охраны здоровья людей и хозяйственной деятельности человека будет сказано в § 1.3. Первым из современников Л. Пастера, кто оценил значение его от крытий, был английский хирург Дж. Листер (1827 1912 гг.), который, ос новываясь на достижениях Л. Пастера, впервые ввел в медицинскую прак тику обработку всех хирургических инструментов карболовой кислотой, обеззараживание операционных и добился снижения числа смертельных исходов после операций.

Одним из основоположников медицинской микробиологии является Роберт Кох (1843 1910 гг.), которому принадлежит разработка методов получения чистых культур бактерий, окра ска бактерий при микроскопии, микрофотографии. Известна также сформулированная Р. Кохом триада Коха, которой до сих пор пользуются при установлении возбудителя болезни. В 1877 г. Р. Кох выделил возбудителя сибирской язвы, в 1882 г. возбудителя туберкулеза, а в 1905 г. ему была присуждена Нобелевская премия за открытие возбудителя холеры. В физиологический период, а именно в 1867 г., М.С. Воронин описал клубеньковые бактерии, а почти через 20 лет Г. Гельригель и Г. Вильфарт показали их способность к азотфиксации. Французские химики Т. Шлезинг, А. Мюнц обосновали микробиологическую природу нитрификации (1877 г.), а в 1882 г. П. Дегерен установил природу денитрификации, природу анаэробного разложения растительных остатков.

Российский ученый П.А. Костычев создал теорию микробиологической природы процессов почвообразования. Наконец, в 1892 г. русский ботаник Д. И. Ивановский (1864 1920 гг.) открыл вирус табачной мозаики. В 1898 г. независимо от Д.И. Ивановского этот же вирус был описан М. Бейеринком. Затем был открыт вирус ящура (Ф. Леффлер, П. Фрош, 1897 г.), желтой лихорадки (У. Рид, 1901 г.) и многие другие вирусы. Однако увидеть вирусные частицы стало возможным только после изобретения электронного микроскопа, так как в световые микроскопы они не видны. К настоящему времени царство вирусов насчитывает до 1000 болезнетворных видов. Только за последнее время открыт ряд новых Д. И. Ивановский вирусов, в том числе вирус, вызывающий СПИД.

Несомненно, что период открытия новых вирусов и бактерий и изучения их морфологии и физиологии продолжается до настоящего времени. С.Н. Виноградский (1856 1953 гг.) и голландский микробиолог М. Бейеринк (1851 1931 гг.) ввели микроэкологический принцип исследования микроорганизмов. С.Н. Виноградский предложил создавать специфические (элективные) условия, дающие возможность преимуществен ного развития одной группы микроорганизмов, открыл в 1893 г. анаэроб ный азотфиксатор, названный им в честь Пастера Clostridiumpasterianum, выделил из почвы микроорганизмы, представляющие совершенно новый тип жизни и получившие название хемолитоавтотрофных.

Микроэкологический принцип был развит и М. Бейеринком и применен при выделении различных групп микроорганизмов. Через 8 лет после открытия С.Н. Виноградским азотфиксатора М. Бейеринк выделил в аэробных условиях Azotobacterchroococcum, исследовал физиологию клубеньковых бактерий, процессы денитрификации и сульфатредукции и т.д. Оба этих исследователя являются основоположниками экологического на правления микробиологии, связанного с изучением роли микроорганизмов в круговороте веществ в природе. К концу XIX в. намечается дифференциация микробиологии на ряд частных направлений: общая, медицинская, почвенная.

ИММУНОЛОГИЧЕСКИЙ ПЕРИОД (НАЧАЛО ХХ в.) С наступлением ХХ в. начинается новый период в микробиологии, к которому привели открытия XIX в. Работы Л. Пастера по вакцинации, И.И. Мечникова по фагоцитозу, П.Эрлиха по теории гуморального иммунитета составили основное содержание этого этапа в развитии микробиологии, по праву получившего название иммунологического.

И.И. Мечников того, как стала широко применяться вакцинация против многих заболеваний. И.И. Мечников показал, что защита организма от болезнетворных бактерий это сложная биологическая реакция, в основе которой лежит способность фагоцитов (макро и микрофаги) захватывать и разрушать посторонние тела, попавшие в организм, в том числе бактерии. Ис следования И.И. Мечникова по фагоцитозу убедительно доказали, что, по мимо гуморального, существует клеточный иммунитет. И.И. Мечников и П. Эрлих были научными противниками на протяжении многих лет, каждый экспериментально доказывал справедливость своей теории.

Впоследствии оказалось, что противоречия между гуморальным и фагоцитарным иммунитетами нет, так как эти механизмы осуществляют защиту организма совместно. И в 1908 г. И.И. Мечникову совместно с П. Эрлихом была присуждена Нобелевская премия за разработку теории иммунитета. Иммунологический период характеризуется открытием основных ре акций иммунной системы на генетически чужеродные вещества (антигены): антителообразование и фагоцитоз, гиперчувствительность замедленного типа (ГЗТ), гиперчувствительность немедленного типа (ГНТ), толерантность, иммунологическая память.

Особенно бурное развитие получили микробиология и иммунология в 50 60 гг. двадцатого столетия. Этому способствовали важнейшие открытия в области молекулярной биологии, генетики, биоорганической химии; появление новых наук: генетической инженерии, молекулярной биологии, биотехнологии, информатики; создание новых методов и использование научной аппаратуры. Иммунология является основой для разработки лабораторных методов диагностики, профилактики и лечения инфекционных и многих неинфекционных болезней, а также разработки иммунобиологических препаратов (вакцин, иммуноглобулинов, иммуномодуляторов, аллергенов, диагностических препаратов). Разработкой и производством иммунобиологических препаратов занимается иммунобиотехнология самостоятельный раз дел иммунологии.

Современная медицинская микробиология и иммунология достигли больших успехов и играют огромную роль в диагностике, профилактике и лечении инфекционных и многих неинфекционных болезней, связанных с нарушением иммунной системы (онкологические, аутоиммунные болезни, трансплантация органов и тканей и др.).

Например, химический синтез лизоцима (Д. Села, 1971 г.), пептидов вируса СПИДа (Р.В. Петров, В.Т. Иванов и др.). 3. Расшифровка строения антителиммуноглобулинов (Д. Эдельман, Р. Портер, 1959 г.). 4. Разработка метода культур животных и растительных клеток и их выращивание в промышленных масштабах с целью получения вирусных антигенов. 5. Получение рекомбинантных бактерий и рекомбинантных вирусов. 6. Создание гибридом путем слияния иммунных В лимфоцитов продуцентов антител и раковых клеток с целью получения моноклональных антител (Д. Келлер, Ц. Мильштейн, 1975 г.). 7. Открытие иммуномодуляторов иммуноцитокининов (интерлейкины, интерфероны, миелопептиды и др.) эндогенных природных регуляторов иммунной системы и их использование для профилактики и лечения различных болезней. 8. Получение вакцин с помощью методов биотехнологии и приемов генетической инженерии (гепатита В, малярии, антигенов ВИЧ и других антигенов) и биологически активных пептидов (интерфероны, интерлейкины, ростовые факторы и др.). 9. Разработка синтетических вакцин на основе природных или синтетических антигенов и их фрагментов. 10. Открытие вирусов, вызывающих иммунодефициты. 11. Разработка принципиально новых способов диагностики инфекционных и неинфекционных болезней (иммуноферментный, радиоиммунный анализы, иммуноблотинг, гибридизация нуклеиновых кислот).

Создание на основе этих способов тестсистем для индикации, идентификации микроорганизмов, диагностики инфекционных и неинфекционных болез ней. Во второй половине ХХ в. продолжается формирование новых на правлений в микробиологии, от нее отпочковываются новые дисциплины со своими объектами исследований (вирусология, микология), выделяются направления, различающиеся задачами исследования (общая микробиология, техническая, сельскохозяйственная, медицинская микробиология, генетика микроорганизмов и т.д.). Было изучено много форм микроорганизмов и примерно к середине 50х гг. прошлого века А. Клюйвером (1888 1956 гг.) и К. Нилем (1897 1985 гг.) была сформулирована теория биохимического единства жизни

Реакция Вассермана (RW или ЭДС-Экспресс Диагностика Сифилиса) - устаревший метод диагностики сифилиса при помощи серологической реакции. В настоящее время заменён микрореакцией преципитации (антикардиолипиновый тест , MP , RPR - RapidPlasmaReagin). Названа по имени немецкого иммунолога Августа Вассермана <#"justify">Это реакция агглютинации применяемая для диагностики брюшного тифа и некоторых тифо-паратифозных заболеваний.

Предложена в 1896 французским врачом Ф. Видалем (F. Widal, 1862-1929). В. р. основана на способности антител (агглютининов), образующихся в организме в течение болезни и длительно сохраняющихся после выздоровления, вызывать склеивание брюшнотифозных микроорганизмов, специфические антитела (агглютинины) обнаруживаются в крови больного со 2-ой недели болезни.

Для постановки реакции Видаля берут шприцем кровь из локтевой вены в количестве 2-3 мл и дают ей свернуться. Образовавшийся сгусток отделяют, а сыворотку отсасывают в чистую пробирку и готовят из неё 3 ряда разведений сыворотки больного от 1:100 до 1:800 следующим образом: во все пробирки разливают по 1 мл (20 капель) физиологического раствора; затем этой же пипеткой наливают 1 мл сыворотки, разведенной 1:50 в первую пробирку, перемешивают с физиологическим раствором, таким образом получают разведение 1:100, Из этой пробирки переносят 1 мл сыворотки в следующую пробирку, перемешивают с физиологическим раствором, получают разведение 1:200 также получают разведения 1:400 и 1:800 в каждом из трёх рядов.

Реакция агглютинации Видзля ведётся в объеме 1 мл жидкости, поэтому из последней пробирки после смешения жидкости удаляют 1 мл. В отдельную контрольную пробирку наливают 1 мл физиологического раствора без сыворотки. Этот контроль ставится для проверки возможности спонтанной агглютинации антигена (диагностикума) а каждом ряду {контроль антигена). Во все пробирки каждого ряда, соответствующего надписям, закапывают по 2 капли диагностикума. Штатив ставят в термостат на 2 часа при 37 «С и затем на сутки оставляют при комнатной температуре. Учёт реакции производится на следующем занятии.

В сыворотках больных могут быть как специфические, так и групповые антитела, которые различаются по высоте титра. Специфическая реакция агглютинации идёт обычно до более высокого титра. Реакция считается положительной, если агглютинация произошла хотя бы в первой пробирке с разведением 1:200. Обычно она наступает в больших разведениях. Если наблюдается групповая агглютинация с двумя или тремя антигенами, то возбудителем болезни считают того микроба, с которым произошла агглютинация в наиболее высоком разведении сыворотки.

Если при добавлении к сыворотке крови человека культуры возбудителя происходит агглютинация, реакция считается положительной. Для диагностики брюшного тифа реакцию Видаля ставят многократно, учитывая её показания в динамике и в связи с Анамнез <#"justify">Заключение

За время своего развития микробиология не только много почерпнула из смежных наук (например, иммунологии, биохимии, биофизики и генетики), но и сама дала мощный импульс для их дальнейшего развития. Микробиология изучает морфологию, физиологию, генетику, систематику, экологию и взаимоотношения микроорганизмов с другими существами. Поскольку микроорганизмы очень многообразны, то более детальным их изучением занимаются специальные её направления: вирусология, бактериология, микология, протозоология и др. Обилие фактического материала, накопленного за относительно короткий период научного развития микробиологии (со второй половины XIX в.), способствовало разделению микробиологии на ряд специализированных направлений: медицинское, ветеринарное, техническое, космическое и т.д.

Медицинская микробиология изучает микроорганизмы, патогенные и условно-патогенные для человека, их экологию и распространённость, методы их выделения и идентификации, а также вопросы эпидемиологии, специфической терапии и профилактики вызываемых ими заболеваний.

Актуальной проблемой медицинской микробиологии до настоящего времени остаётся исследование всего комплекса взаимодействий внутри экосистемы «микроорганизм-микроорганизм», будь это микроб-комменсал или микроб-патоген.

Список литературы

1. Покровский В.И. «Медицинская микробиология, иммунология, вирусология». Учебник для студентов фарм. ВУЗов, 2002.

Борисов Л.Б. «Медицинская микробиология, вирусология и иммунология». Учебник для студентов мед. ВУЗов, 1994.

Воробьев А.А. «Микробиология». Учебник для студентов мед. ВУЗов, 1994.

Коротяев А.И. «Медицинская микробиология, вирусология и иммунология», 1998.

Букринская А.Г. «Вирусология», 1986.

Л. Б. Борисов. Медицинская микробиология, вирусология, иммунология. М.: ООО «МИА», 2010. 736 с.

Поздеев О. К. Медицинская микробиология. М.: ГЭОТАР-МЕД, 2001. 754 с.

И других кисломолочных продуктов, получения алкоголя , уксуса , при мочке льна .

Донаучный этап развития

Люди издревне знали о многих процессах, вызываемых микроорганизмами, однако не знали истинных причин вызывающих эти явления. Отсутствие сведений о природе таких явлений не мешало делать наблюдения и даже использовать ряд этих процессов в быту. Ряд философов и естествоиспытателей делали умозрительные заключения о причинах тех или иных явлений. При этом наиболее близко к открытию микромира подошел Джироламо Фракасторо ( -), предположивший что инфекции вызывают маленькие тельца, передающиеся при контакте и сохраняющиеся на вещах больного. Однако в то время невозможно было удостовериться в правильности его идей и распространение получили совершенно иные гипотезы.

Бактериальную природу инфекционных заболеваний многие учёные продолжали отвергать и после революционных открытий Пастера и Коха . Так, в 1892 году Макс Петтенкофер, уверенный в том что холеру вызывают миазмы, выделяемые окружающей средой, и пытаясь доказать свою правоту, проглотил при свидетелях-медиках культуру холерных вибрионов и не заболел.

Описательный этап

Антони ван Левенгук.

Возможность изучения микроорганизмов возникла лишь с развитием оптических приборов. Первый микроскоп был создан ещё в 1610 году Галилеем . В Роберт Гук впервые увидел растительные клетки. Однако 30 кратного увеличения его микроскопа не хватило чтобы увидеть простейших и тем более бактерии . По мнению В. Л. Омельянского «первым исследователем, перед изумлённым взором которого открылся мир микроорганизмов, был учёный иезуит Афанасий Кирхер ( -), автор ряда сочинений астрологического характера», однако обычно первооткрывателем микромира называют Антони ван Левенгука .

Между тем, наука в целом ещё не была готова к пониманию роли микроорганизмов в природе. Система теорий возникла тогда лишь в физике . Во времена Левенгука отсутствовали представления о ключевых процессах живой природы, так, незадолго до него в 1648 году Ван Гельмонт , не имея никакого понятия о фотосинтезе , заключил из своего опыта с ивой, что растение берёт питание только из дистиллированной воды, которой он его поливал. Более того, даже неживая материя ещё не была достаточно изучена, состав атмосферы, необходимый для понимания того же фотосинтеза, будет определён лишь в -1776 годах . Поэтому неудивительно что «животным» Левенгука не нашлось место нигде, кроме как в коллекции курьёзов.

В течение следующих 100-150 лет развитие микробиологии проходило лишь с описанием новых видов. Видную роль в изучении многообразия микроорганизмов сыграл Отто Фридрих Мюллер [кто? ] , который к описал и назвал по линнеевской биномиальной номенклатуре 379 различных видов. В это время было сделано и несколько интересных открытий. Так, в была определена причина «кровоточения» просфор - бактерия, названная Serratia marcescens (другое название Monas prodigiosa ). Также следует отметить Христиана Готтфрида Эренберга [кто? ] , описавшего множество пигментированных бактерий, первые железобактерии , а также скелеты простейших и диатомовых водорослей в морских и лиманных отложениях, чем положил начало микропалеонтологии. Именно он впервые объяснил окраску воды Красного моря развитием в ней цианобактерий Trichodesmium erythraeum . Он, однако, причислял бактерий к простейшим и рассматривал их вслед за Левенгуком как полноценных животных с желудком, кишечником и конечностями…

В России одним из первых микробиологов был Л. С. Ценковский ( -), описавший большое число простейших, водорослей и грибов и сделавший вывод об отсутствии резкой границы между растениями и животными. Им также была организована одна из первых Пастеровских станций и предложена вакцина против сибирской язвы .

Высказывались в это время и смелые гипотезы, например врач-эпидемиолог Д. С. Самойлович ( -1801) был убеждён в том что болезни вызываются именно микроорганизмами, однако тщетно пытался увидеть в микроскоп возбудитель чумы - возможности оптики тогда ещё не позволяли это сделать. В итальянец А. Басси обнаружил передачу болезни шелковичного червя при переносе микроскопического гриба. Ж. Л. Л. Бюффон и А. Л. Лавуазье связывали брожение с дрожжами, однако общепринятой оставалась чисто химическая теория этого процесса, сформулированная в 1697 году Г. Э. Шталем. Для спиртового брожения, как для любой реакции, Лавуазье и Л. Ж. Гей-Люссаком были посчитаны стехиометрические соотношения. В 1830-х Ш. Каньяр де Латур, Ф. Кютцинг и Т. Шванн независимо друг от друга наблюдали обилие микроорганизмов в осадке и плёнке на поверхности бродящей жидкости и связали брожение с их развитием. Эти представление наткнулись, однако, на резкую критику со стороны таких видных химиков как Фридрих Вёлер , Йёнс Якоб Берцелиус и Юстус Либих . Последний даже написал анонимную статью «О разгаданной тайне спиртового брожения» () - саркастическую пародию на микробиологические исследования тех лет.

Тем не менее, вопрос о причинах брожения, тесно связанный с вопросом о спонтанном самозарождении жизни, стал первым успешно решённым вопросом о роли микроорганизмов в природе.

Споры о самозарождении и брожении

Открытие вирусов

Изучение обмена веществ микроорганизмов

Техническая, или промышленная, микробиология

Техническая микробиология изучает микроорганизмы, используемые в производственных процессах с целью получения различных практически важных веществ: пищевых продуктов, этанола, глицерина, ацетона, органических кислот и др.

Огромный вклад в развитие микробиологии внесли русские и советские учёные: И. И. Мечников ( -), Д. И. Ивановский ( -), Н. Ф. Гамалея ( -), Л. С. Ценковский, С. Н. Виноградский , В. Л. Омелянский , Д. К. Заболотный ( -), В. С. Буткевич, С. П. Костычев, Н. Г. Холодный, В. Н. Шапошников, Н. А. Красильников, А. А. Ишменецкий и др.

Большая роль в развитии технической микробиологии принадлежит С. П. Костычеву, С. Л. Иванову и А. И. Лебедеву, которые изучили химизм процесса спиртового брожения, вызываемого дрожжами. На основании исследований химизма образования органических кислот мицелиальными грибами, проведённым В. Н. Костычевым и В. С. Буткевичем, в 1930 году в Ленинграде было организовано производство лимонной кислоты. На основе изучения закономерностей развития молочнокислых бактерий, осуществлённого В. Н. Шапошниковым и А. Я. Мантейфель, в начале 1920-х годов в СССР было организовано производство молочной кислоты, необходимой в медицине для лечения ослабленных и рахитичных детей. В. Н. Шапошников и его ученики разработали технологию получения ацетона и бутилового спирта с помощью бактерий, и в 1934 году в Грозном был пущен первый в СССР завод по выпуску этих растворителей. Труды Я. Я. Никитинского Ф. М. Чистякова положили начало развитию микробиологии консервного производства и холодильного хранения скоропортящихся пищевых продуктов. Благодаря работам А. С. Королёва , А. Ф. Войткевича и их учеников значительное развитие получила микробиология молока и молочных продуктов.

Частью технической микробиологии является пищевая микробиология, изучающая способы получения пищевых продуктов с использованием микроорганизмов. Например, дрожжи применяют в виноделии, пивоварении, хлебопечении, спиртовом производстве; молочнокислые бактерии - в производстве кисломолочных продуктов, сыров, при квашении овощей; уксусно-кислые бактерии - в производстве уксуса; мицелиальные грибы используют для получения лимонной и других пищевых органических кислот и т. д. К настоящему времени выделились специальные разделы пищевой микробиологии: микробиология дрожжевого и хлебопекарного производства, пивоваренного производства, консервного производства, молока и молочных продуктов, уксуса, мясных и рыбных продуктов, маргарина и т. д.

Методы и цели микробиологии

К методам исследования любых микроорганизмов относят:

  • микроскопия : световая, фазово-контрастная , темнопольная , флуоресцентная , электронная ;
  • культуральный метод (бактериологический, вирусологический);
  • биологический метод (заражение лабораторных животных с воспроизведением инфекционного процесса на чувствительных моделях);
  • молекулярно-генетический метод (ПЦР , ДНК- и РНК-зонды и др.);
  • серологический метод - выявления антигенов микроорганизмов или антител к ним (ИФА).

Цель медицинской микробиологии - глубокое изучение структуры и важнейших биологических свойств патогенных микробов, взаимоотношения их с организмом человека в определенных условиях природной и социальной среды, совершенствование методов микробиологической диагностики, разработка новых, более эффективных лечебных и профилактических препаратов, решение такой важной проблемы, как ликвидация и предупреждение инфекционных болезней.

Связь с другими науками

За время существования микробиологии сформировались общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная ветви.

Примечания

Литература

  • Вербина Н. М., Каптерёва Ю. В. Микробиология пищевых производств. - М.: изд. ВО «АГРОПРОМИЗДАТ», 1988. - ISBN 5-10-000191-7
  • Воробьёв А. В., Быков А. С., Пашков Е. П., Рыбакова А. М. Микробиология: Учебник. - 2-е изд. перераб. и доп. - М.: Медицина, 2003. - 336 с. - (Учеб. лит. для студ. фарм. вузов). - ISBN 5-225-04411-5
  • Галынкин В. А., Заикина Н.А., Кочеровец В.И. и др. Основы фармацевтической микробиологии: учебное пособие для системы послевузовского образования. - С.-П.: Проспект науки, 2008. - 288 с. - ISBN 978-5-903090-14-3
  • Гусев М. В. , Минеева Л. А. Микробиология. - 9-е изд., стер. - М.: Издательский центр «Академия», 2010. - 464 с. - (Серия: Классическая учебная книга). - ISBN 978-5-7695-7372-9
  • Гусев М. В., Минеева Л. А. Микробиология: Учебник для студ. биол. специальностей вузов. - 4-е изд., стер. - М.: Издательский центр «Академия», 2003. - 464 с. - ISBN 5-7695-1403-5
  • Заварзин Г. А. , Колотилова Н. Н. Введение в природоведческую микробиологию. - М.: Книжный дом «Университет», 2001. - 256 с. - ISBN 5-8013-0124-0
  • Кондратьева Е. Н. Автотрофные прокариоты: Учеб. пособие для студентов вузов, обучающихся по направлению «Биология», специальностям «Микробиология», «Биотехнология». - М.: Изд-во МГУ, 1996. - 302 с. - ISBN 5-211-03644-1
  • Лысак В. В. Микробиология: учеб. пособие. - Минск: БГУ, 2007. - 426 с. - ISBN 985-485-709-3
  • Шлегель Г. Г. История микробиологии: Перевод с немецкого. - М: изд-во УРСС, 2002. - 304 с. - ISBN 5-354-00010-6

См. также

  • Портал:Микробиология и иммунология

Ссылки

Классификация живого мира по Виттекеру.

Plentae(растения)Fundi(грибы) Animalia (животные)

Protista (одноклеточные)

Monera (бактерии)

Определение- Микробиология наука о животных организмах имеющих малые размеры и невидимых невооруженным глазом.

Микроорганизмы не представляют собой единой систематической группы. К ним относятся одноклеточные и многоклеточные организмы растительного и животного происхождения, а также особая группа прокарестических организмов-бактерий и бактериофаги, вирусы.

Размеры микроорганизмов.

Группа микроорганизмов

Размер микроорганизмов

Наука изучающая данную группу

Вирусология

Бактерии

Бактериология

Цианобактерии

Альгология

Микроскопические водоросли

Микроскопические животные

Протозоология

Микроскопические грибы

Микология(Фунгология)

История микробиологии.

Человек в своей практической деятельности встречался с микроорганизмами с древнейших времен: хлебопечение; виноделие; пивоварение; инфекционные заболевания.

Причины инфекционных заболеваний выяснялись начиная с древней Греции.

Гиппократ IVвек до н.э. (тиазмы в воздухе)

Фракастора Vвек до н.э. (учение о контагее)

Микроорганизмы впервые увидел Антонио Ван Левенгук 17век (1632-1723)

Vivaanimalika– маленькие зверушки.

В середине 19 века Геккель изучая более внимательно строение бактериальных клеток обнаружил, что оно отличаться от строения клеток растений и животных. Он назвал эту группу прокариоты (клетки не имеющие настоящего ядра), а остальные растения, животные и грибы которые в клетке имеют ядро отошли в группу эукариоты.

Начинается II период развития микробиологии пастеровский или физиологический.

Работы Пастера. (1822-1895)

Пастер поставил развитие микробиологии на новый путь. По воззрениям того времени брожение считалось чисто химическим процессом

    Пастер в своих работах показал, что каждый вид брожения вызывается свими специфическими возбудителями – микроорганизмами.

    Изучая масляно-кислое брожение Пастер установил, что для бактерий вызывающих это брожение воздух вреден и открыл новый тип жизни анаэробиоз.

    Пастер доказал невозможность самозарождения жизни.

    Пастер изучал инфекционные заболевания (сибирскую язву) и предложил метод предохранительных прививок как способ борьбы с инфекциями. Пастер сделал первый шаг и зарождению новой науки – иммунология. В 1888г. В Париже на средства собранные по подписке был построен институт микробиологии.

    Пастеризация.

Роберт Кох (1843-1910)

    Окончательно доказал, что заразные болезни вызываются болезнетворными бактериями. Указал приемы борьбы с распространением инфекционных заболеваний – ДЕЗИНФЕКЦИЯ.

    Ввел в практику микробиологических исследованный использование твердых патотельных сред для получения чистых культур.

    Открыл возбудителей сибирской язвы (1877г.), туберкулеза (1882г.), холеры(1883г.).

Русская микробиология.

Н. Н. Мечников (1845-1916)

Продолжил работы Пастера по предохранительным прививкам и обнаружил, что в ответ на введения в кровь ослабленного возбудителя болезни в крови появляется большое количество особых иммунных тел –фагоцитов, и т.о. обосновал теорию иммунитета.

В 1909г. Получил за эту теорию Нобелевскую премию.

С. Н. Виноградский (1856-1953)

Следовал серобактерии, железобактерии, нитрифицирующие бактерии. Изучал почвенные бактерии. Открыл явление азотофикации. Открыл процесс хемосинтеза.

Хемосинтез исп. химических связей внутри молекул, как источник энергии для настроения новых молекул.

В. Л. Омелонский (1867-1928)

Написал первый учебник по микробиологии.

Методы микробиологических исследований.

    Бактериоскопический –это изучение внешней формы микроорганизмов с помощью увеличительных приборов.

    Бактериологический – это метод выращивания бактерий искусственных питательных средах. С помощью этого метода изучаеться форма бактериальных колоний, период роста, и др. характеристики роста бактериальных культур.

    Общебиологические :

    Методы молекулярной биологии,

    Цитохимии

    Генетики

    Биофизики

Химический состав и строение бактериальной клетки.

    Поверхностные клеточные структуры и внеклеточные образования: 1- клеточная стенка; 2-капсула; 3-слизистые выделения; 4-чехол; 5-жгутики; 6-ворсинки.

    Цитоплазматические клеточные структуры: 7-ЦМП; 8-нуклеотид; 9-рибосомы; 10-цитоплазма; 11-хроматофоры; 12-хлоросомы; 13-пластинчатые тилакоиды; 16-мезасома; 17-аэросомы (газовые вакуоли) ; 18-ламелярные структуры;

    Запасные вещества: 19-полисахарные гранулы; 20-гранулы поли-β-оксимасляной кислоты; 21-гранулы полифосфата; 22-цианофициновые гранулы; 23-карбоксисомы (полиэдральные тела); 24-вкючения серы; 25-жировые капли; 26-углеводородные гранулы.

Ультраструктура бактериальной клетки.

Разные методы исследования позволили выявить различия внутренней и внешней структуры у бактерий.

Поверхностная структура это:

  • Ворсинки

    Клеточная стенка

Внутренние структуры:

    Цитоплазматическая мембрана (ЦПМ)

    Нуклеоид

    Рибосомы

    Мезосомы

    Включения

Функции органеллы.

Клеточная стенка – обязательная структура для прокариотов за исключением микоплазмы и L-формы. На долю клеточной стенки приходится от 5 до 50% сухого вещества клетки.

Клеточная стенка имеет поры и пронизана сетью каналов и разрывов.

Функции

    Поддержание постоянной внешней формы бактерий.

    Механическая защита клетки

    Дают возможности существовать в гипотонических растворах.

Слизистая капсула (слизистый чехол)

Капсула и слизистый чехол покрывают клетку снаружи. Капсулой называется слизистое образование покрывающее клеточную стенку, имеющеечетко очерченную поверхность.

Различают:

    Микрокапсулу (меньше 0,2 мкм)

    Микрокапсулу (больше 0,2 мкм)

Наличие капсулы зависит от вида микроорганизмов и условий культивирования.

Различают капсульные колонии:

    S-типа (гладкие, ровные, блестящие)

    R-типа (шероховатые)

Функции:

    Защищает клетку от механических повреждений

    Защищает от высыхания

    Создает дополнительный осмотический барьер

    Служит препятствием для проникновения вирусом

    Является источником запасных питательных веществ

    Может быть приспособлением к окружающей среде

Под слизистым чехлом понимают аморфное бесструктурное слизистое вещество окружающее клеточную стенку и легко отделяющееся от неё.

Иногда ослизнение происходит у нескольких клеток так, что образуется общий чехол (зоология)

Функции:

Те же, что у капсулы.

Ворсинки представляют собой тонкие полые образования белковой природы (длина от 0,3-10 мкм, толщина 10 нм). Ворсинки подобно жгутикам являеться поверхностными придатками бактериальной клетки, но не выполняют локомоторную реакцию.

Жгутики

Функция

Локомоторная

ЦПМ – обязательный структурный элемент клетки. На долю ЦПМ приходиться 8-15% сухого вещества клетки из них 50-70% - белки 15-30% - липиды. Толщина ЦПМ 70-100Å (10⁻¹⁰).

Функции:

    Перенос веществ – через мембраны,

    Активный (против градиента концентрации, осуществляется белками – ферментами с затратой энергии)

    Пассивный (по градиенту концентрации)

    Локализуется большинство ферментативных систем клетки

    Имеет специальные участки для прикрепления ДНК прекариотной клетки и именно рост мембраны обеспечивает разделение геномов при делении клетки.

Нуклеоид . Вопрос о наличии ядра у бактерий в течении десятилетий носил дискуссионный характер.

При помощи электронной микроскопии ультратонких срезов бактериальных клеток, усовершенствованных цитохимических методах, радиографических и генетических исследований доказано наличие у бактерий нуклеодида – эквивалента ядра в клетке эукариотов.

Нуклеоид :

    Не имеет мембраны,

    Не содержит хромасом

    Не делиться митозом.

Один нуклеоид представляет собой макромолекулу ДНК с молекулярным весом 2-3*10⁹, размером 25-30 Å.

В развернутом состоянии это замкнутая кольцевая структура длинной примерно 1мнм.

В молекуле ДНК нуклеоида закодирована вся генетическая информация клетки и т.о. она является своеобразной кольцевой хромасомой.

Количество нуклеоидов в клетке – 1, реже от 1 до 8.

Рибосомы – это нуклеоидные частицы размером в 200-300Å. Ответственны за синтез белка. Находятся в цитоплазме прокариотов в количестве 5-50 тысяч.

Хроматофоры – это складки цитоплазматической мембраны в виде капель, которые содержат окислительно-восстановительные ферменты. У фотосинтетиков – ферменты осуществляют синтез веществ за счет энергии солнца, у хемосинтетиков- за счет разрушенных химических связей молекулы.

Тилокоиды так же содержат набор окислительно-восстановительных ферментов. Они есть и у фотосинтеиков и у хемосинтетиков. Очевидно прообраз митохондрий.

    Пластинчатые

    Трубчатые

Функции

    Окисление веществ.

Аэросомы - структуры, которые содержат какой-либо газ.

Внутрицитоплазмотические включения

В процессе жизнедеятельности бактериологической клетки в её цитоплазме могут формироваться морфологические образования, выявляемые цитохимическими методами. Эти образования названные включениями по своей химической природе различны и не одинаковы у разных бактерий. В одних случаях включения являются продуктами обмена бактериальной клетки, а в других запасным питательным питательным веществом.

Химический состав клеток прокариотов.

В состав любой клетки прокариотов входят:

    2 типа нуклеиновых кислот (ДНК и РНК)

  • Углеводы

    Минеральные вещества

Вода

В количественном отношении самый значительный компонент клеток микроорганизмов, количество её составляет 75-85%. Количество воды зависит от вида микроорганизмов, условий роста, физиологического состояния клетки.

Вода в клетках бывает в 3-х состояниях:

    Свободном

    Связанном

    Связанном с боиполимерами

Роль воды. Универсальный растворитель- необходимый для растворения многих химических растворений и осуществления реакций промежуточного метаболизма (гидролиз).

Минеральные вещества

    Биогены (углерод(50%), водород,кислород,азот(14%),фосфор(1%),сера)

    Макроэлементы (0,01-3% от сухой массы клетки) K, Na, Mg, Ca, Cl, Fe.

    Микроэлементы (0,001-0,01% от сухой массы клетки) Mg, Zn,Mo,B,Cr,Co,Cu, и др.

    Ультрамикроэлементы (<0,001%) вся остальная таблица Менделеева.

Соотношение отдельных химических элементов может колебаться в значительных пределах, в зависимости от систематического положения микроорганизмов, условий роста и ряда других причин.

Количество минеральных веществ составляет 2-14% от сухой массы клетки, после биогенов.

Роль минеральных веществ :

    Являются активаторами и ингибиторами ферментативных систем.

Биополимеры.

Основные химические элементы входят в состав биополимеров присущих всем живым организмам:

    Нуклеиновых кислот

  • Углеводов (полисахаридов)

Характерным только для клеток – прокариот являются биополимер составляющий основу их клеточной стенки (по химическому составу это гликопептид или пептидогликан).

Нуклиновые кислоты .

В клетках в среднем содержится 10% РНК и 3-4% ДНК.

Белки.

Важнейшее значение в структуре и функции клеток принадлежит белкам, на долю которых приходиться 50-75% от сухой массы клетки.

Значит долю белков микроорганизмов составляют ферменты играющие существенную роль в проявлении жизнедеятельности прокариот. К биологически активным белкам принадлежат белки участвующие в транспорте питательных веществ а также многие токсины.

Часть белков составляют белки выполняющие структурную функцию – белки ЦПМ, клеточной стенки и др. органелл клетки.

Лепиды

В состав лепитов прокариот входят жирные кислоты, нейтральные жиры, фосфолепиды, гликолепиды, воска, лепиды содержащие изопреновые единицы (каротеноиды, бактопренол).

Микоплазмы в отличие от всех других прокариот содержат холестерин. Большая часть лепидов входит в состав мембраны клетки и клеточной стенки.

Углеводы

Из них состоят многие структурные компоненты клетки. Они используются в качестве доступных источников энергии и углерода. В клетках содержаться как моносахариды, так и полисахариды.

Морфология бактерий.

По внешнему виду бактерии делятся на 3 группы:

    Кокковидной формы

    Палочковидной формы

    Извитые (или спиралевидные)

Шаровидные бактерии – (кокки).

Могут быть самостоятельными клетками – монококки °₀° или связанными попарно – диплококки или связанными в цепочку – стрептококки или в пакете – сарцины

или в виде виноградной кисти – стафилококки

Бактерии шаровидной формы называемые кокками имеют правильную сферическую форму или форму неправильного шара.

Средний диаметр кокков – 0,5-1,5 мкм, у пневмококков например –

По признаку расположения клеток по отношению друг к другу кокки делят на:

    Монококки

    Диплококки

    Стрептококки

  • Стафилококки

Палочковидные бактерии (цилиндрические)

Различаются по форме величине в длину и в поперечнике, в форме концов клетки а так же взаимному расположению.

Размеры в поперечнике 0,5-1 мкм, длинна 2-3мкм.

Большинство палочковидных бактерий имеют форму прямого цилиндра. Некоторые бактерии могут иметь либо прямую либо слегка изогнутую форму.

Изогнутая форма встречается у вибрионов к которым относится возбудитель холеры.

У отдельных бактерий встречаются нитевидные и ветвящиеся формы.

Палочковидные микроорганизмы могут образовывать споры.

Спорообразующие формы называются бациллы.

Неспорообразующие называються бактериями.

Булавовидные.

Клострициальные.

В зависимости от взаимного расположения делят:

    Монобациллы

    Диплобациллы

    Стептобациллы

Спиралевидные бактерии

Бактерии имеющие изгибы, равные одному или нескольким оборотам спирали.

В зависимости от количества витков делят на группы:

    Вибрионы

    Спироллы 4-6 витков

    Спирохеты 6-15 витков

Чаще всего это болезнетворные микроорганизмы.

Существуют еще редко встречающиеся бактерии.

Шаровидная, палочковидная и спиралевидная форм бактерий самые распространенные, но встречатся и другие формы:

    Имеют вид кольца (замкнутого или разомкнутого в зависимости от стадии роста). Такие клетки предложено называть тороидами.

    У некоторых бактерий описано образование клеточных выростов, число которых может колебаться от 1 до 8и более.

    Существуют так же бактерии напоминающие по виду правильную шестиугольную звезду.

    Для некоторых групп прокариотов характерно ветвление.

    В 1980 году английский микробиолог Уолсби сообщил что микроорганизмы могут быть квадратными.

Форма бактерий наследственно закреплена (за исключением мипопиазм и L- форм), и по этому является одним из критериев при определении микроорганизмов.

Движение бактерий.

Способность активно передвигаться присуща многим бактериям. Существуют 2 типа подвижных бактерий:

    Скользящие

    Плавающее

    Скольжение. Микроорганизмы передвигаются по твердому и полу твердому субстрату (почва, ил, камни). В результате волнообразных сокращений вызывающих периферическое изменение формы тела. Образуется некоторое подобие бегущей волны: выпуклости клеточной стенки, которая перемещаясь в одном направлении способствует движению в противоположную сторону.

    Плавание. Палочковидные бактерии относятся к плавающим формам, а так же большинство спирилл и некоторые кокки.

Все эти бактерии передвигаются с помощью особых поверхностных нитевидных образований, называемых жгутиками. Различают несколько типов жгутикования в зависимости от того как они расположены на поверхности и сколько их:

    Монотрих

    Биполярный монотрих или амфитрих

    Лофотрих

    Амфитрих или биполярный лофотриф

    Перетрих

Толщина жгутиков 0,01-0,03 мкм. Длинна меняется у одной и той же клетки в зависимости от условий окружающей среды от 3-12 мкм.

Число жгутиков различно у разных видов бактерий, у некоторых перитрихов она достигает 100.

Жгутики не являются жизненно важными органами.

Жгутики как бы присутствуют на определенных стадиях развития клетки.

Скорость передвижения бактерий при помощи жгутиков различается у разных видов. Большинство бактерий проходит за секунду расстояние равное длине своего тела. Некоторые бактерии при благоприятных условиях могут проходить расстояния превышающие 50 длин тела.

В перемещениях бактерий есть определенный смысл, они стремятся в сторону наиболее благоприятных условий существования. Они называются таисисами.

Таксисы могут быть хема, фото, аэро,

Если в сторону благоприятных факторов то это положительно таксис , если от факторов, то отрицательно таксис.

Споры и спорообразование.

Многие бактерии способны образовывать структуры помогающие им переживать в течение длительного времени не благоприятные условия и переходить в активное состояние при попадание в подходящие для этого условия. Эти формы называются цистами эндоспорами.

Микроцисты:

При их образовании происходит утолщение стенки вегетативной клетки, в результате чего формируются оптически плотные, яркопреломляющие свет, окруженные слизью, укороченные палочки или сферические формы.

Они функционально аналогичны бактериальным эндоспорам:

    Более устойчивы к изменению температур

    Высушиванию

    Различным физическим воздействиям, чем вегетативная клетка.

Эндоспоры:

Образуются эндоспоры у следующих бактерий:

  • Desulfotomaculum

Формирование споры начинается с того что в зоне локализации нитей ДНК происходит уплотнение цитоплазмы, которая вместе с генетическим материалом обособляется от остального клеточного содержимого с помощью перегородки. Образуются плотные мембранные слои между которыми начинается формирование кортикального слоя (кортекс).

Спора- это покоящаяся стадия спорообразующих видов бактерий.

Бактерии образуют споры, когда создаются такие условия в окружающей среде которые индуцируют процесс спорообразования.

Считается что споры не обязательная стадия цикла развития споро образующих бактерий.

Можно создать условия в которых рост и размножение бактериальных клеток происходит без спорообразования в течении многих поколений.

Факторы и индуцирующие споро образование:

    Недостаток питательных веществ в среде

    Изменение pH

    Изменение температуры

    Накопление выше определенного уровня продуктов клеточного метаболизма.

Принципы систематики микроорганизмов.

Понятие вид, штамм, клон.

Основная таксономическая единица –вид который следует рассматривать как конкретную форму существования органического мира.

В микробиологии понятие вид можно определить как совокупность микроорганизмов имеющих единое происхождение и генотип, сходных по своим биологическим признакам и обладающих наследственно закрепленной способностью вызывать в стандартных условиях качественно-определенные процессы.

Сравнительно однородные виды бактерий определяют в роды → семейства → порядки → классы.

Важным критерием определения понятия вид является однородность особей.

Для микроорганизмов строгая однородность признаков не является характерными, поскольку их морфологические свойства могут изменяться в зависимости от условий окружающей с среды в течение короткого времени.

Название микроорганизма состоит из двух слов: первое слово означает род (оно пишется с большой буквы и является производной от какого либо термина характеризующего признак, или от фамилии автора открывшего или изучившего этот микроорганизм), второе слово обозначает конкретный вид (пишется с маленькой буквы и является производным существительного определяющего источник происхождения микроба, либо название вызываемого им заболевания, либо фамилия автора). Bacillusanthracis.

В микробиологии широко применяются термины штамм иклон.

Штамм более узкое понятие чем вид.

Штаммами называются различные микробные культуры одного вида, выделенные из различных источников или из одного источника, но в разное время.

Штаммы одного вида могут быть совершенно идентичными или различаться по отдельным признакам (например по устойчивости к какому – либо антибиотику, ферментации какого-либо сахара и т.д.).

Однако свойства различных штаммов не выходят за пределы вида.

Термином клон обозначают культуру микроорганизмов полученную из одной клетки.

Популяции микробов состоящие из особей одного вида называются чистой культурой.

Понятие о статических и проточных микробных культурах.

Хемостат

Турбиностат – определение мертвых микроорганизмов по мутности.

Таких емкостях выращивается проточная микробная культура.

Для выращивания проточной микробной культуры, выращенной в условиях постоянной подпитки и удаления продуктов метаболизма и мертвых микробных клеток.

Статичная микробная культура – это популяция бактерий находящихся в ограниченном жизненном пространстве, которое не обменивается ни веществом ни энергией с окружающей средой.

Закономерности роста и развития микроорганизмов.

Изменение и обновление организма в процессе его обмена с окружающей средой называется развитием. Развитие организма имеет 2 следствия:

    Размножение.

Под ростом подразумевается увеличение размеров организма или его живого веса.

Под размножением подразумевается увеличение количества организмов.

Скорости роста микробной популяции:

Абсолютная скорость.

Относительная скорость по биомассе.

Понятие генерации:

Фазы развития стационарной микробной культуры.

    Фаза – лаг-фоза.

Период от внесения бактерий до достижения ими максимальной относительной скорости роста. В этот период бактерии приспосабливаются к новой среде обитания и поэтому размножаются не значительно. К концу лаг-фазы клетки часто увеличивают свой оббьем и т.к. их количество в этот момент не велико, то относительная скорость роста биомассы становиться максимальной, по окончании этого периода, в то время как абсолютная скорость лишь незначительно увеличиваться. Длительность лаг-фазы зависит как от внешних условий так и от возраста бактерий и их видовой специфичности. Как правило чем полноценней среда, тем короче лаг-фаза. Изменение в химическом составе бактериальной клетки выражается в накоплении запасных питательных веществ и в резком повышении содержания РНК (в 8-12 раз), что свидетельствует об интенсивном синтезе ферментов, необходимых для дальнейшего роста и развития клетки.

    Фаза – ускорение роста.

Характеризуется постоянной относительной скоростью деления клеток. В этот период число клеток возрастает по экспоненте. Удельная скорость остается постоянной и максимальной, а абсолютная скорость быстро возрастает. Скорость деления клеток в фазе ускоренного роста является максимальной для них, причем для различных видов бактерий и условий окружающей среды эта скорость различна, так например, кишечная палочка в этой фазе делится каждые 20 минут, для некоторых почвенных бактерий время генерации 60-150 минут, а у нитрифицирующих бактерий 5-10 часов. В течении этой фазы величина клеток и их химический состав остаются постоянными.

    Фаза – линейного роста.

Эта фаза характеризуется резким снижением удельной скорости роста, т.е. увеличением времени генерации. Причиной этому служит начинающийся дефицит питательных веществ и избыточное содержание в среде продуктов обмена, которые в определенной концентрации негативно влияют на рост популяции. В этот период количество бактерий увеличивается линейно, а абсолютная скорость достигает максимума.

    Фаза – замедление роста.

В этот период дефицит питательных веществ и концентрации продуктов обмена продолжают увеличиваться, что сказывается на падении абсолютной и относительной скоростей роста. Увеличение количества клеток постепенно замедляется и к концу фазы и к концу фазы приближается к максимуму. В этот период характеристика отмирания части наименее приспособленных клеток.

II,IIIиIVфазы объединяются в одну фазуроста.

    Фаза- стационарная.

В течение этой фазы количество живых клеток в культуре сохраняется примерно постоянным, т.к. число вновь образующихся клеток равно числу отмирающих. Абсолютная и относительная скорости роста приближаются к нулевой отметке. Отмирание или выживание бактерий в этой фазе не является случайными событиями. Выживают как правило те клетки, которые способны качественно перестроить свой обмен веществ. Для всех бактерий в этой фазе характерно использование запасенных веществ, распад части клеточных веществ, биомассы статической культуры в этой фазе достигает максимума и поэтому называется выходом или урожаем культуры. количество урожая зависит от видовой принадлежности микроорганизмов, от природы и количества питательных веществ, а так же от условий культивирования. В микробных производствах проточные микробные культуры поддерживают в стационарной фазе развития.

    Фаза – отмирание.

Эта фаза наступает в тот момент когда концентрация какого либо из необходимых клеткам питательных веществ, падает до условного нуля, или когда какой-либо продукт обмена достигает такой концентрации в среде, при которой он токсичен для большинства клеток. Абсолютная и удельная скорости роста отрицательны, что говорит об отсутствии деления клеток.

МИКРОБИОЛОГИЯ (греч. mikros малый + биология) - наука о микроскопических существах, микроорганизмах, или микробах, их строении и жизнедеятельности, значении в жизни природы, в патологии человека, животных и растений, их систематике, изменчивости, наследственности и экологии.

М. как наука возникла во второй половине 19 в. и со времени своего возникновения тесно связана с практической деятельностью человека. Накопленный огромный фактический материал о биологии микроорганизмов, цели и задачи практической направленности научных исследований в М. определили ее дифференциацию на отдельные направления. Так сформировались общая М., техническая (промышленная) М., сельскохозяйственная М., ветеринарная М., медицинская М., санитарная М., радиационная М.

М. как часть биологии использует биол, методы исследования (см. Биология), а также методы, применяемые только в М. как самостоятельной науке. М. использует такие методы, как метод выделения чистых культур, методы изучения их морфол, и культуральных свойств, биохим, и биосинтетической активности, изучения антигенной структуры, патогенности и вирулентности и других свойств. М. широко использует методы генетики микроорганизмов, бактериофагии, различные методы микроскопии (светлопольная и темнопольная микроскопия, фазовоконтрастная, люминесцентная, электронная и др.), а также методы биохимии (см.), молекулярной биологии (см.), биофизики (см.) и других наук в зависимости от задач и целей исследования.

Общая М. изучает положение и роль микроорганизмов в природе, систематику микроорганизмов, их морфологию и тонкую структурную организацию, биохимию и физиологию микроорганизмов - хим. состав, конструктивный и энергетический метаболизм, ферментные системы, рост и размножение, культивирование. Важным разделом общей М. является генетика микроорганизмов, к-рая изучает как общие закономерности наследственности и изменчивости микроорганизмов, так и прикладные вопросы различных микробиол. специальностей. Общая М. изучает вопросы взаимоотношений микроорганизмов в естественных условиях обитания, вопросы экологии, общие вопросы микробиол, синтеза антибиотиков и других биологически активных веществ. Общая М. изучает и ряд специальных вопросов геомикробиологии, космической М. и других проблем.

Основные разделы общей М. включаются в курс всех микробиол, специальностей, т. к. являются основой для познания частных и прикладных вопросов М.

Техническая (промышленная) микробиология изучает общие и частные вопросы микробиол, синтеза биологически активный веществ: белка, аминокислот, нуклеиновых к-т, витаминов, к-т, спиртов, стероидов, гормонов и др., а также вопросы технологии их производства. Важное место в технической М. занимает использование микроорганизмов в пищевой промышленности, в производстве молочных продуктов, вина, хлеба и др., в производстве кормовых дрожжей, а также изучение М. пищевых продуктов. Техническая М. изучает вопросы биодеградации технических материалов и способов их предохранения от действия микроорганизмов.

Ветеринарная микробиология изучает возбудителей инфекционных болезней животных, разрабатывает лаб. диагностику инф. заболеваний и способы их предупреждения. Важной задачей ветеринарной М. является изучение и совершенствование диагностических, леч. и профилактических препаратов и осуществление мероприятий, направленных на борьбу с заболеваниями животных, вт. ч. общих с заболеваниями человека.

Mедицинская микробиология изучает патогенные и условно-патогенные для человека микроорганизмы. Общая медицинская М. изучает вопросы общей М. в приложении к патогенным и условно-патогенным микроорганизмам и механизмы их болезнетворного действия, а также защитные реакции организма, возникающие в ответ на действие микроорганизмов, способных вызывать заболевания. Частная медицинская М. изучает различные систематические группы патогенных и условно-патогенных микроорганизмов, разрабатывает методы лаб. диагностики, специфической профилактики инф. болезней и другие вопросы.

Одним из наиболее важных разделов медицинской М. является изучение биол, и генетических аспектов вирулентности (см.) и общих закономерностей развития инф. процессов. Важным разделом медицинской М., тесно связанным с проблемами инфекции и иммунитета, является изучение нормальной микрофлоры человека, ее роли в норме и патологии.

В задачи медицинской М. входит изучение антигенного строения микроорганизмов, вопросов иммунохимии, токсинообразования, строения токсинов и механизмов их действия. Важнейшим разделом медицинской М. является разработка профилактических, диагностических и леч. специфических препаратов, таких как вакцины (см.), диагностические и лечебные сыворотки (см.), диагностикумы (см.) и др.

Большим самостоятельным разделом медицинской М. является учение об антибиотиках (см.), антибиотико- и химиотерапии инф. болезней, механизмах действия химиотерапевтических препаратов и изучение природы резистентности к ним микроорганизмов.

Знание биологии возбудителей инф. болезней, закономерностей иммунитета, а также патогенеза инф. болезней является основой микробиол. идентификации возбудителя и индикации патогенных микроорганизмов в окружающей среде (см. Идентификация микробов). Крупным прикладным разделом медицинской М. является клиническая М. (см. Микробиология клиническая).

Основные этапы развития микробиологии. Становление М. как науки было длительным и во многом зависело от развития биологии, физики, химии и достижений техники. Человечество задолго до открытия микроорганизмов использовало их в своих целях при хлебопечении, сыроварении, виноделии и др., не зная о происходящих при этом процессах. Заразные болезни уносили тысячи жизней, и их происхождение давно привлекало внимание врачей и мыслителей. В 1546 г. итальянский врач и писатель Дж. Фракасторо опубликовал фундаментальный труд «О контагии, контагиозных болезнях и лечении», в к-ром высказал идею о живой природе возбудителей заразных болезней. Однако познание природы возбудителей зависело от создания оптических приборов, первые из к-рых были созданы в 17 в. голландским естествоиспытателем А. Левенгуком. Достигнув большого совершенства в шлифовании стекол, А. Левенгук смог создать первые короткофокусные линзы, дававшие увеличение в 250-300 раз. Применение линз позволило ему получить первые достоверные сведения о микроорганизмах, увиденных в различных объектах (дождевая вода, зубной налет, испражнения и др.); они были описаны им в письмах Лондонскому королевскому об-ву. А. Левенгук описал обнаруженных им «живых зверьков» и сделал зарисовки, судя по к-рым, можно считать, что он обнаружил основные морфол, формы бактерий.

А. Левенгук считается первооткрывателем микроорганизмов, истинное значение к-рых было раскрыто только в 19 в.

Дальнейший этап развития М. связан с именами ученых, сделавших первые попытки классификации микроорганизмов. Первым из них был Мюллер (О. F. Muller), опубликовавший в 1773 и 1786 гг. первые работы по классификации микроорганизмов (инфузорий в его терминологии). В 1838 и 1840 гг. Эренберг (С. G. Ehrenberg) выделил такие микроорганизмы, как спирохеты и спириллы. Положительную роль сыграли работы Ф. Кона, к-рый отнес микроорганизмы к растениям и выделил класс Schizophyceae, объединяющий их с низшими водорослями. Негели (С. W. Naegeli, 1857) отделил бактерии от низших водорослей и включил их в класс Schizomycetes (грибов-дробянок). Эти названия долго сохранялись в классификации микроорганизмов. В 1974 г. микробы, исключая грибки, простейшие и вирусы, были выделены в царство Procaryotae и представлены в определителе бактерий Берджи (Bergey’s Manual of Determinative Bacteriology). Немалую роль в становлении учения о микроорганизмах сыграли работы Ф. Кона о стабильности свойств бактерий и обоснованные им представления о мономорфизме в противоположность работам Негели о крайней изменчивости свойств микроорганизмов (плеоморфизм).

Во второй половине 19 в. великий франц. ученый Л. Пастер заложил основы М. как науки и создал многие будущие ее направления. Будучи по профессии химиком, он внес экспериментальный подход в изучение микроорганизмов и выяснение их роли. Начав исследования с изучения природы брожений при «болезнях» вина, из-за к-рых франц. виноделие несло убытки, он установил (1857), что при каждой из форм бро-жения (маслянокислом, уксуснокислом, спиртовом и др.) причиной является специфический микроб. Т. о., была установлена причина брожения и специфичность микроорганизмов, что, в свою очередь, позволило решить и прикладную задачу предотвращения развития болезней вина и пива. (см. Пастеризация).

При изучении природы брожений Л. Пастер открыл явление анаэробиоза, сыгравшее впоследствии огромную роль при изучении процессов дыхания и энергетического обмена. В этот период Л. Пастер показал, что процессы гниения также вызываются специфическими микроорганизмами.

Уже эти открытия Л. Пастера способствовали развитию медицины. Англ. хирург Дж. Листер, основываясь на открытиях Л. Пастера в области брожения и гниения, в 1867 г. ввел в хирургию антисептику (см.), к-рая в дальнейшем была дополнена асептикой (см.). Введение этих методов в хирургию резко снизило осложнения и смертность при хирургических вмешательствах и способствовало прогрессу хирургии.

Изучение процессов брожений и специфичности их возбудителей явилось основой для выяснения роли микроорганизмов при инф. болезнях. Первые исследования были проведены с болезнью шелковичных червей (пебриной). Л. Пастер установил пути распространения пебрины и разработал методы предотвращения заболеваний. Применив экспериментальный метод, Л. Пастер установил роль микроорганизмов при сибирской язве и куриной холере, доказав тем самым их инф. природу.

Исследования Л. Пастера с возбудителем куриной холеры привели к новому открытию, положившему начало профилактике инф. болезней. В 1880 г. Л. Пастер открыл возможность аттенуации возбудителя (см. Аттенуация), что явилось основой для приготовления вакцин. Наибольшим достижением этого принципа явилось получение Л. Пастером в 1885 г. антирабической вакцины.

В развитии М. и становлении ее как науки большие заслуги принадлежат Р. Коху, к-рый разработал ряд методов в М. Он ввел применение плотных питательных сред (желатина и др.), что позволило разработать метод получения чистых культур (см. Бактериальная культура). Большие заслуги принадлежат Р. Коху в области изучения этиологии нек-рых инф. болезней (туберкулеза, холеры, сибирской язвы). Р. Кох для изучения морфологии бактерий ввел метод окраски бактериальных культур; различные методы окраски микроорганизмов, разработанные и усовершенствованные многими другими исследователями, напр, метод Грама, метод Нейссера, метод Циля - Нельсена и др., оставались до применения электронной микроскопии основой для изучения морфологии бактерий. Многие из них до сих пор не утратили своего практического значения.

Классические работы Л. Пастера и Р. Коха заложили основы разработки методов изучения бактерий, создали фундамент микробиол, эры в медицине. Предложенные ими и их учениками методы привели к бурному развитию М., к открытию возбудителей многих инф. болезней. За короткий период времени М. достигла больших успехов в открытии патогенных микроорганизмов, разработке методов микробиол, диагностики, специфической профилактики и терапии. Введение микробиол, методов исследования позволило выявлять источники инф. болезней, пути и способы их передачи, что создало основу для возникновения самостоятельной науки эпидемиологии (см.).

Мед. направление в М. в ранний период ее развития было основным. Наряду с изучением этиологии инф. болезней начинает развиваться учение о невосприимчивости (см. Иммунитет), к-рое впоследствии выделилось в самостоятельную науку - иммунологию. Научные основы иммунологии были заложены работами П. Эрлиха и И. И. Мечникова. В 1890 г. были открыты агглютинины, затем другие виды антител, что послужило основой для разработки и введения в практику серол, методов диагностики. Открытием в 1888 г. дифтерийного [Э. Ру и Йерсен (A. Yersin)], затем столбнячного токсинов (С. Китасато) были заложены основы учения об инфекции и патогенных свойствах бактерий. Вслед за открытием токсинов был установлен антитоксический характер иммунитета при дифтерии и столбняке (Э. Беринг и С. Китасато, 1890-е гг.), что привело к созданию серотерапии (см.) и серопрофилактики (см.).

В 1923 г. франц. ученый Г. Рамон открыл принцип обезвреживания токсинов и превращения их в анатоксины (см.), что дало возможность проведения активной иммунизации против токсигенных инфекций. Впоследствии большую исследовательскую работу по получению анатоксинов для производственных целей, изучению их эффективности провели советские микробиологи (П. Ф. Здродовский, К. Т. Халяпина, И. И. Рогозин, Г. В. Выгодчиков и др.).

В 1892 г. русский ботаник Д. И. Ивановский открыл новую группу микробов - вирусы, чем положил начало развитию вирусологии (см.). Открытием в 1875 г.

Ф.А. Лешем дизентерийной амебы, в 1880 г. франц. врачом А. Лавераном малярийного плазмодия и в 1898 г. П. Ф. Боровским возбудителя кожного лейшманиоза было положено начало новой науке протозоологии.

Ученица И. И. Мечникова П. В. Циклинская, первая русская женщина-микробиолог, своими исследованиями нормальной микрофлоры внесла оригинальное направление в медицинскую М., развитое впоследствии в науку гнотобиологию (см.).

Выдающийся ученый С. Н. Виноградский, один из основоположников М., открытием новой группы бактерий хемотрофов и явления хемосинтеза положил начало развитию сельскохозяйственной и общей М. Классическими работами С. Н. Виноградского обоснована огромная роль микроорганизмов в круговороте элементов в природе (азота, углерода, серы и др.).

В 40-х гг. началось интенсивное изучение генетики бактерий, и за короткий период были достигнуты большие успехи (см. Бактерии, генетика бактерий). Большое число исследований было посвящено изучению вирулентных и умеренных бактериофагов и явлению лизогении [М. Дельбрюк, А. Львов, Ф. Жакоб, Волльман (E. L. Wollman)]. Развитие генетики бактерий и бактериофагов способствовало возникновению молекулярной биологии.

История развития отечественной М. тесно связана с мед. практикой, наибольшие успехи были достигнуты в годы Советской власти. Сразу же после Великой Октябрьской социалистической революции основные направления в медицинской М. были посвящены разработке фундаментальных и прикладных исследований, связанных с профилактическим направлением советской медицины.

Большие успехи достигнуты советскими микробиологами при разработке и получении вакцин против чумы (Н. И. Жуков-Вережников, М. П. Покровская, Е. И. Коробкова), туляремии (Н. А. Гайский, Б. Я, Эльберт и др.), сибирской язвы (H. Н. Гинсбург), бруцеллеза (П. Ф. Здродовский, П. А. Вершилова). Большая работа была проведена по изучению безвредности и широкому введению в практическую работу вакцины БЦЖ (А. И. Тогунова, Б. Я. Эльберт и др.). Практическое здравоохранение получило большое количество вакцин для специфической профилактики многих болезней, диагностических препаратов, леч. и профилактических сывороток, антибиотиков.

Широко развитые исследования в области специфической профилактики сыграли большую роль в снижении инф. болезней и ликвидации нек-рых из них на территории Советского Союза.

Современное состояние микробиологии

В современной М. имеется большое число фундаментальных и прикладных проблем, важных как для биологии, так и для решения специальных задач науки, практики и народного хозяйства. В результате научно-технического прогресса и все большего проникновения в разные микробиол, специальности методов общей М., привлечения методов исследования других наук (генетики, молекулярной биологии, биохимии, биофизики и др.) в развитии современной М. произошел качественный рост.

Одним из основных направлений М., успехи в к-ром позволят решить многие прикладные проблемы, является биология и генетика разных систематических групп микроорганизмов. В этой области с 60-х гг. 20 в. достигнуты огромные успехи. Актуальными и важными для решения многих вопросов М. остаются исследования ультраструктуры микроорганизмов в сочетании с изучением функциональной активности структур и органелл клеток, а также исследования в области биохимии и физиологии микроорганизмов - конструктивного и энергетического обмена, роста и деления клеток и генетической регуляции этих процессов, биохимического и генетического механизмов биосинтеза и дифференцировки структурных компонентов микроорганизмов. Возросло значение изучения роста и развития микробной популяции и закономерностей их промышленного культивирования, изучения вторичного метаболизма, прикладной генетики микроорганизмов.

В последние годы широкое развитие получило изучение внехромосомных факторов наследственности (см. Плазмиды). С плазмидами как наиболее удобными объектами были осуществлены первые эксперименты по генной инженерии (см.). Изучение плазмид имеет ряд фундаментальных и прикладных аспектов исследования. К ним можно отнести изучение молекулярной организации плазмид, их генетики, роли в функциональной активности микроорганизмов, в частности в биосинтетической активности и вторичном метаболизме. Проблема происхождения плазмид и их эволюции имеет общебиол. значение. В мед. отношении наиболее важным является изучение плазмид множественной лекарственной резистентности, закономерностей их распространения среди бактерий при селективных и неселективных условиях, а также плазмид, определяющих патогенные свойства бактерий, антигены клетки.

В медицинской М. важными проблемами, к-рые не могут быть изучены без глубокого понимания биологии и генетики микроорганизмов, являются проблемы инфекции, патогенности и вирулентности. В решении этих вопросов М. достигла значительных успехов, однако важным направлением исследований остается изучение свойств патогенных микроорганизмов, придающих им патогенность, генетики, вирулентности, строения токсинов и механизмов их действия, этапов взаимодействия бактерий с чувствительными тканями и клетками; важной является проблема персистенции возбудителей и бактерионосительства.

Одной из основных проблем медицинской М. остается проблема получения новых профилактических и диагностических препаратов, в связи с чем важным является изучение антигенной структуры микроорганизмов, изучение антигенов, их хим. строения, локализации и генетического регулирования. Все эти вопросы хорошо изучены только у нек-рых видов патогенных и условно-патогенных микроорганизмов. Для получения новых профилактических препаратов, в частности живых вакцин, требуется изучение различных методов аттенуации (ослабление вирулентности), в т. ч. использование методов генной инженерии.

Наряду с этим отмечается тенденция все более широкого и более глубокого изучения и получения хим. и молекулярных вакцин. Современная М. достигла такого уровня, что эмпирический подход к конструированию вакцин и вакцинных штаммов сменился научно обоснованным, вытекающим из всего комплекса знаний о микробиологии и генетике патогенных микроорганизмов. Изучение иммуногенности микроорганизмов и их отдельных компонентов тесно связано с иммунохимией (см.) и иммунологией (см.).

Происходит дальнейшее изучение свойств патогенных и условно-патогенных микроорганизмов, изучение биол, и генетических закономерностей смены возбудителей при ряде инфекционных болезней, разработка новых методов идентификации микроорганизмов, в т. ч. ускоренных методов.

Важной является проблема нормальной микрофлоры человека (см.), ее роли в норме и патологии. В этой связи особое значение приобрела проблема условно-патогенных микроорганизмов, приобретения ими лекарственной резистентности и возникновения внутрибольничных инфекций.

Продолжают развиваться исследования в области бактериофагии (см. Бактериофаг). Значительно расширилась возможность использования фагов для идентификации бактерий. Продолжение исследований в этом направлении является важным и необходимым. Также важным для изучения многих фундаментальных вопросов биологии микроорганизмов и для решения ряда прикладных задач является продолжение исследований в области фаговой конверсии (см.). Не потеряла своей актуальности проблема использования фага для лечения, особенно на фоне возросшего числа антибиотикорезистентных бактерий, и для профилактики нек-рых инф. болезней.

Большой и важной проблемой современной М. является проблема систематики и номенклатуры микроорганизмов.

Научно-исследовательская работа в СССР в области М. проводится в НИИ и на кафедрах М. ун-тов, медицинских, ветеринарных, сельскохозяйственных и нек-рых других ин-тов.

Первые научные исследования в России проводились в Харьковском бактериологическом ин-те (основан в 1887 г.), Ин-те экспериментальной медицины в Петербурге (основан в 1890 г.), Московском бактериологическом ин-те (основан в 1895 г.), бактериол. ин-тах в Одессе, Томске, Казани и др. После Великой Октябрьской социалистической революции была создана мощная сеть научно-исследовательских, производственных и практических микробиол. учреждений. Наиболее крупными из них являются: Ин-т микробиологии АН СССР, Ин-т эпидемиологии и микробиологии им.

Н. Ф. Гамалеи АМН СССР, Ин-т биохимии и физиологии микроорганизмов АН СССР, Ин-т вакцин и сывороток им. И. И. Мечникова М3 СССР, Ин-т стандартизации и контроля медицинских биологических препаратов им. Л. А. Тарасевича, Центральный НИИ эпидемиологии М3 СССР, Ин-т вирусологии и микробиологии АН УССР, Белорусский ин-т эпидемиологии и микробиологии, Московский и Горьковский ин-ты эпидемиологии и микробиологии М3 РСФСР. Исследования по М. проводятся также в Ин-те инфекционных болезней М3 УССР, Ин-те экспериментальной медицины АМН СССР, ин-тах ВАСХНИЛ и др. Исследования по особо опасным инфекциям проводятся в противочумных ин-тах М3 СССР.

Первый ин-т по М. был организован в Париже в 1888 г. (Пастеровский ин-т) и назван в честь Л. Пастера; затем подобные ин-ты были созданы в Берлине, Лондоне и др. Исследования по М. проводятся в ун-тах, колледжах, мед. школах при ун-тах, а также в ин-тах и центрах, наиболее крупными из к-рых являются: Institut Pasteur (Париж); National Institute for Medical Research (Лондон); National Institute of Health (Токио); National Institute of Health (Бетесда, США); National Institute of Allergy and Infections Diseases (Бетесда, США); Carnegi Institution (Вашингтон, США); Center for Disease Control (Атланта, США); State Serum Institute (Хельсинки); Institute of Fundamental Research (Бомбей, Индия) н др.

В системе высшего мед. образования преподавание М. занимает видное место и проводится кафедрами М. на 2-3-м курсах, при этом преподается бактериология, вирусология, иммунология, основы микологии и протозоологии по программе, утвержденной М3 СССР. Преподавание разделяется на общую М. и частную медицинскую М. и состоит из лекционного курса и практических лаб. занятий. Специалистов по М. готовят в ин-тах усовершенствования врачей и в аспирантуре.

Результаты научных исследований по М. публикуются во многих журналах, основные из* них: «Доклады АН СССР» (СССР), «Микробиология» (СССР), «Журнал микробиологии, эпидемиологии и иммунобиологии» (СССР), «Бюллетень экспериментальной биологии и медицины» (СССР), «Антибиотики» (СССР), «Прикладная биохимия и микробиология» (СССР), «Journal of General Microbiology» (Великобритания), «Journal of Medical Microbiology» (Великобритания), «Acta pathologica et microbiologica Scandinavian, Seria B. Microbiology» (Дания), «Acta microbiologica» (Польша), «Journal of Bacteriology» (США), «International Journal of Systematic Bacteriology» (США), «Infection and Immunity» (США), «Journal of Infection Diseases» (США), «Microbiology» (ФРГ), «Infektion» (ФРГ), «Current topics in Microbiology and Immunology» (ФРГ), «Annales de Microbiologie» (Франция), «Журнал гигиены, эпидемиологии, микробиологии и иммунологии», «Folia microbiologica» (Чехословакия), «Journal of General and Applied Microbiology» (Япония), «Zentralblatt fur Bacteriologie, Parasitenkunde Infektionskrankheiten und Hygiene, Ab-teilung 2» (ГДР), «Canadian Journal of Microbiology» (Канада), «Antonie van Leeuwenhoek Journal of Microbiology and Serology» (Нидерланды).

В истории медицинской М. в СССР важная роль принадлежала съездам микробиологов, эпидемиологов и инфекционистов, на к-рых обсуждались актуальные вопросы микробиологии, эпидемиологии и инф. патологии.

В 1972 г. специалисты по инф. болезням выделились в самостоятельное об-во.

Санитарная микробиология изучает жизнедеятельность микроорганизмов в окружающей среде, их влияние на естественные процессы, протекающие в этой среде, а также возможность благоприятного или отрицательного их влияния на окружающую среду и здоровье человека.

Санитарная М. близка к медицинской и ветеринарной М., так как изучает те же объекты, однако отличается подходом к их изучению. Ведущими методами исследования санитарной М. является определение микробной обсемененности, санитарно-показательных и патогенных микроорганизмов в объектах окружающей среды.

Основными задачами санитарной М. являются: 1) разработка и совершенствование микробиол, и вирусол, методов исследований объектов окружающей среды - воды, воздуха, почвы, пищевых продуктов, предметов обихода и т. д.; 2) изучение источников загрязнения окружающей среды разнообразной микрофлорой, представляющей опасность для человека или вносящей заметные изменения в объекты окружающей среды; 3) изучение жизнедеятельности микрофлоры в окружающей среде, особенно в условиях ее хим. и биол, загрязнения; 4) разработка нормативов для гиг. оценки объектов окружающей среды, в т. ч. пищевых продуктов, по микробиол, показателям; 5) разработка мероприятий по оздоровлению объектов окружающей среды и контроль за эффективностью этих мероприятий, включая контроль за качеством водоснабжения, работой предприятий пищевой промышленности и общественного питания, эффективностью обеззараживания сточных вод, отбросов и т. д.

Санитарная М. относится к числу молодых наук. Ее развитие тесно связано с потребностями человеческого об-ва. Формирование санитарной М. происходило прежде всего в нашей стране начиная с 30-х гг. и тесно связано с именами А. А. Миллера, И. Е. Минкевича, Г. Н. Чистовича, Г. П. Калины и др., опубликовавших первые в мире учебные пособия и ряд крупных монографий по санитарной М.

Лаборатории санитарной М. созданы в составе ряда НИИ. Большой вклад в развитие санитарной М. вносят соответствующие лаборатории Ин-та общей и коммунальной гигиены им. А. Н. Сысина АМН СССР, Московского НИИ гигиены им. Ф. Ф. Эрисмана М3 РСФСР, Ин-та питания АМН СССР, Киевского НИИ общей и коммунальной гигиены им.

А. Н. Марзеева М3 УССР, Куйбышевского НИИ гигиены и профзаболеваний, Молдавского ин-та гигиены и эпидемиологии, кафедр микробиологии Ленинградского санитарно-гигиенического медицинского ин-та и ряда кафедр других мед. ин-тов.

Создана и активно функционирует сеть санитарно-микробиологических лабораторий при СЭС, осуществляющих контроль за выполнением рекомендаций и нормативов в области профилактической службы страны.

Отдельные аспекты вопросов, относящихся к сфере санитарной М., преподаются в составе ряда дисциплин, таких как микробиология, коммунальная гигиена и гигиена питания и др.

В 1963 г. по инициативе акад. АМН Г. И. Сидоренко была организована первая в СССР секция сан. микробиологов при Московском городском отделении Всесоюзного научного об-ва гигиенистов и санитарных врачей. В 1973 г. создана секция санитарной М. при Всесоюзной проблемной комиссии «Научные основы гигиены окружающей среды», а в 1979 г.- секция санитарной М. при Всесоюзной проблемной комиссии «Научные основы питания».

В СССР проведено 7 всесоюзных и ряд республиканских конференций по санитарной М. Статьи по вопросам, входящим в компетенцию санитарной микробиологии, регулярно публикуются в журналах «Гигиена и санитария», «Вопросы питания», «Журнал микробиологии, эпидемиологии и иммунобиологии» и ряде других периодических медицинских изданий.

Радиационная микробиология - раздел микробиологии, изучающий влияние ионизирующих излучений на микроорганизмы. Радиационная микробиология охватывает следующий круг вопросов: механизм действия ионизирующих излучений (см.) на микроорганизмы, морфол, и биохим, изменения микроорганизмов при облучении, генетические изменения (см. Радиационная генетика), радиочувствительность микроорганизмов, бактерицидные действия радиации (см. Бактерицидность), действие радиации на антигенные и иммуногенные свойства микроорганизмов, защиту микроорганизмов от воздействия ионизирующей радиации.

Бактерии были одним из первых объектов, на к-рых изучалось действие ионизирующих излучений на живой организм. В 1896 г. появилось первое сообщение о влиянии рентгеновского излучения на возбудителей брюшного тифа, а в 1901 г. был описан бактерицидный эффект рентгеновского излучения. С этого времени началось изучение действия ионизирующих излучений на микроорганизмы. Радиационная микробиология уделяет большое внимание вопросам чувствительности микроорганизмов к ионизирующим излучениям. Микроорганизмы отличаются низкой радиочувствительностью по сравнению с животными и растениями. Средние летальные дозы для микроорганизмов превышают таковые для животных на 1-3 порядка, а бактерицидный эффект для большинства бактерий достигается только при дозах порядка 1-2 мрад. Среди микроорганизмов наиболее чувствительны к ионизирующим излучениям бактерии, затем следуют грибки, споры бактерий, вирусы. Генотипические и другие биол, особенности микроорганизмов определяют различную чувствительность их к ионизирующим излучениям. Так, напр., радиочувствительность бактерий значительно варьирует внутри одного вида, штамма и популяции бактериальных клеток. Грамположительные бактерии менее чувствительны к излучению, чем грамотрицательные. Радиочувствительность спор бактерий варьирует в меньшей степени, чем радиочувствительность бактерий, не образующих спор. Бактерицидный эффект ионизирующего излучения при воздействии на споры проявляется при облучении в дозах 1,5-2,5 мрад. Однако среди неспорогенных видов обнаружены бактерии, значительно более устойчивые к облучению, чем споры, напр. Streptococcus t"aecium А 2 1. Высушенная культура этих бактерий полностью не убивалась в дозе 4,5 мрад [Кристенсен (Е. А. Christensen), 1973]. Примером высокой радиорезистентности могут служить бактерии рода Pseudomonas, выделенные из атомного реактора в лаборатории в Лос-Аламосе (США). Предполагают, что высокая радиорезистентность выделенных бактерий была либо следствием мутагенного действия радиации, либо радиация явилась фактором селекции наиболее радиорезистентных особей популяции [Торнли, Ингрем, Барнс (М. J. Thornley, М. Ingram, E. М. Barns), 1960].

Повышение радиорезистентности различных видов микроорганизмов может быть достигнуто при постоянном воздействии ионизирующего излучения в сравнительно небольших дозах, напр, у парамеций, выделенных из радиоактивных водоемов, или у бактерий, выделенных из источников радиоактивных минеральных вод, у высокочувствительных к радиации представителей сем. Enterobacteriaceae при многократном облучении в суббактерицидных дозах.

Бактериальная клетка неоднородна по своей радиочувствительности. Ядерный аппарат более чувствителен к ионизирующим излучениям, чем цитоплазма или клеточная оболочка, процессы фосфорилирования более чувствительны, чем весь процесс дыхания клетки и т. д. На радиочувствительность микроорганизмов влияют условия облучения, напр, мощность дозы излучения, температура во время облучения и после него, наличие радиопротекторов, облучение микроорганизмов во влажной среде или в высушенном виде, концентрация и фаза роста микроорганизмов, состав питательной среды и др.

Широкое развитие радиационной М. в СССР началось в 20-х гг. работами Г. А. Надсона и Г. С. Филиппова по действию ионизирующего излучения на грибки и бактерии (Г. А. Надсон, 1920, 1935; Г. А. Надсон, Г. С. Филиппов, 1925). В этот период было накоплено много фактов об изменениях, возникающих в клетке под влиянием ультрафиолетового и ионизирующего излучений. Наиболее важными были данные о мутагенном и бактерицидном действии излучений. Работы Г. А. Надсона и Г. С. Филиппова о мутагенном эффекте ионизирующих излучений положили начало учению о радиационной генетике микроорганизмов, к-рое вошло как часть в радиационную генетику и в общую генетику микроорганизмов.

Ионизирующие излучения в зависимости от дозы могут оказывать бактерицидное действие, мутагенный эффект и изменять свойства микроорганизмов. Изменения свойств могут быть стойкими и сохраняться в последующих поколениях (наследственные изменения) или исчезающими при культивировании облученных микроорганизмов.

Функциональные и морфологические изменения микроорганизмов, возникающие под влиянием УФ- и ионизирующих излучений, многообразны. Подавляется функция деления клеток, что при продолжающемся росте клеток приводит к образованию удлиненных нитевидных форм, а при облучении кокков - к образованию длинных цепочек. Изменяются размеры клеток и без подавления функции деления. Эти изменения приводят к замедлению роста колоний, изменению их формы и величины, образованию окрашенных колоний складчатой формы или слизистого типа. При действии на бактерии и амебы излучения вызывают дегенеративные изменения в ядре: его гипертрофию, вакуолизацию, разбухание, пикноз и фрагментоз ядер. Изменения ядерного аппарата в большинстве случаев приводят к гибели клетки. Если клетка продолжает существовать, то многие ее свойства существенно изменяются. Напр., изменяются тинкториальные свойства, приобретается способность к пигментообразовании), изменяется способность расщеплять углеводы, изменяется чувствительность к антибиотикам, антигенная структура клеток, что влияет на способность агглютинироваться специфическими антисыворотками. Под влиянием УФ- и ионизирующих излучений могут возникать мутационные и не связанные с мутациями изменения вирулентности микроорганизмов и их способности образовывать токсины. В обоих случаях изменения приводят к снижению вирулентности и способности к токсинообразованию.

Установлено, что изменения свойств и способности клетки противостоять большим дозам радиации - радиорезистентности - в значительной мере связаны с лучевыми повреждениями ДНК. Обнаружена способность бактериальной клетки репарировать лучевые повреждения ДНК, что является одним из основных факторов, определяющих радиорезистентность бактерий. Способность к репарации лучевых повреждений у бактерий связана с особенностями генетического аппарата клетки, и поэтому высокая радиорезистентность является признаком, закрепленным наследственно. Однако условия облучения и другие факторы могут существенно изменить степень биол, действия радиации на бактерии и повысить или снизить дозу излучения, необходимую для достижения бактерицидного эффекта.

Бактерицидный эффект ионизирующих излучений широко используется в СССР и за рубежом для стерилизации в медицине и медицинской промышленности (см. Стерилизация).

Становление радиационной М. как самостоятельного раздела М. связано с именами М. Н. Мейселя, В. Л. Троицкого, А. И. Алиханяна, В. Л. Корогодина, 3. Г. Першиной, А. Г. Скавронской и др. За рубежом эта область знаний обязана работам Игали (S. Igali) в ВНР, Д. Ли и Говард-Фландерс (P. Howard-Flanders) в США, Уиткин и Альпер (E. Witkin, Т. Alper) в Англии, Кристенсена (Е.А. Christensen) в Дании. Работы по радиационной М. получили развитие в Ин-те микробиологии и в Ин-те биофизики АН СССР, Ин-те атомной энергии им. И. В. Курчатова, в Ин-те эпидемиологии и микробиологии АМН СССР.

Работы по радиационной М. публикуются в журналах «Радиобиология», «Микробиология», «Биофизика», «Журнал микробиологии, эпидемиологии и иммунобиологии», «Radiationreserch», «J. Bakteriology», «Molecular General Geneticks» и др.

Программы международных конгрессов и съездов микробиологов, радиобиологов, генетиков включают материалы и по радиационной М. Об-ва микробиологов и биохимиков в СССР посвящают свои отдельные заседания вопросам радиационной М.

Библиография: Авакян А. А., Кац Л. Н. и Павлова И. Б. Атлас анатомии бактерий, патогенных для человека и животных, М., 1972, библиогр.; Б а г д а с а-рьян Г. А. и др. Основы санитарной вирусологии, М., 1977, библиогр.; Г а-з и e в А. И. Молекулярные механизмы репарации однонитевых разрывов ДНК, индуцируемых у-радиацией, в кн.: Биофизика сложных систем и радиационных нарушений, под ред. E. М. Франка, с. 150, М., 1977; Гершанович В. Н. Биохимические и генетические основы переноса углеводородов в бактериальную клетку, М., 1973, библиогр.; Калакуц-с к и й Л. В. и А г р e H. С. Развитие актиномицетов, М., 19 77, библиогр.; К о-р о т я e в А. И. Механизмы саморегуляции бактериальной клетки, М., 1973, библиогр.; К у д л а й Д. Г. Внехромо-сомные факторы наследственности бактерий и их значение в инфекционной патологии, М., 1977, библиогр.; Методы санитарно-микробиологического исследования объектов окружающей среды, под ред. Г. И. Сидоренко, М., 1978; Многотомное руководство по микробиологии, клинике и эпидемиологии инфекционных болезней, под ред. H. Н. Жукова-Вережникова, т. 1-10, М., 1962-1968; Молекулярная микробиология, пер. с англ., под ред. Б. Н. Ильяшенко, М., 1977; Молекулярные основы действия антибиотиков, пер. с англ., под ред. Г. Ф. Гаузе, М., 1975; Петровская В. Г. Проблема вирулентности бактерий, Л., 1967, библиогр.; Петровская В. Г. и Марко О. П. Микрофлора человека в норме и патологии, М., 1976; Пешков М. А. Сравнительная цитология синезеленых водорослей, бактерий, актиномицетов, М., 1966; ПяткинК. Д. и Криво-шеин Ю. С. Микробиология, М., 1980; Роуз Э. Химическая микробиология, пер. с англ., М., 1971; Санитарная микробиология, под ред. Г. П. Калины и Г. Н. Чистовича, М., 1969; T e ц В. И. Санитарная микробиология, Л., 1958, библиогр.; Туманян М. А. и Кау-шанский Д. А. Радиационная стерилизация, М., 1974; Шлегель Г. Общая микробиология, пер. с нем., М., 1972; Bergey’s manual of determinative bacteriology, ed. by R. E. Buchanan a. N. E. Gibbons, Baltimore, 1975; Microbiology - 1974, ed. by D. Schlessinger, Washington, 1974, bibliogr.; Microbiology - 1975, ed. by D. Schlessinger, Washington, 1975, bibliogr.; Schlegel H. G. Allgemeine Mikrobiologie, Stuttgart, 1976.

Периодические издания - Антибиотики, М., с 1956; Биология, Реферативный журнал, в. 2 - Вирусология, Микробиология, М., с 1954; Журнал гигиены, эпидемиологии, микробиологии и иммунологии, Прага, с 1957; Журнал микробиологии, эпидемиологии и иммунологии (1924-1929 - Журнал микробиологии, патологии и инфекционных болезней, 1930 -1934 - Журнал микробиологии и иммунобиологии), М., с 1935; Микробиология, М., 1932-1979; Acta patho-logica et microbiologica Scandinavica, K0benhavn, с 1924; Annales de Microbiolo-gie, P., с 1973 (Annales de l’lnstitut Pasteur, P., 1887 -1972); Annual Review of Microbiology, Palo Alto,с 1947; Archivfiir Mikrobiologie, В., с 1930; Journal of Bacteriology, Baltimore, с 1916; Journal of General Microbiology, L., с 1947; Microbiological Reviews, L., с 1978 (Bacteriological Reviews, Baltimore, 1937 - 1977); Zentralblatt fur Bakteriologie, Parasitenkunde, Infektions-krankheiten und Hygiene. I. Abt. Medi-zinisch-hygienische Virusforschung und Parasitologie, Originale, Jena, с. 1887.

В. С. Левашев; Ю. П. Пивоваров (сан. микр.), М. А. Туманян (рад. микр.).

Микробиологией называют науку о микроскопических живых существах, размер которых не превышает 1 мм. Такие организмы можно рассмотреть только с помощью увеличительных приборов. Объектами микробиологии являются представители разных групп живого мира: бактерии, археи, простейшие, микроскопические водоросли, низшие грибы. Все они характеризуются малыми размерами и объединяются общим термином «микроорганизмы».

Микроорганизмы представляют собой самую большую группу живых существ на Земле, и ее члены распространены повсеместно.

Место микробиологии в системе биологических наук определяется спецификой ее объектов, которые, с одной стороны, в большинстве своем представляют собой одну клетку, а с другой - являются полноценным организмом. Как наука об определенном классе объектов и их разнообразии микробиология аналогична таким дисциплинам, как ботаника и зоология. В то же время она относится к физиолого-биохимической ветви биологических дисциплин, так как изучает функциональные возможности микроорганизмов, их взаимодействие с окружающей средой и другими организмами. И наконец, микробиология - это наука, исследующая общие фундаментальные законы существования всего живого, явления на стыке одно- и многоклеточности, развивающая представления об эволюции живых организмов.

Значение микроорганизмов в природных процессах и человеческой деятельности

Роль микробиологии определяется значением микроорганизмов в природных процессах и в человеческой деятельности. Именно они обеспечивают протекание глобального круговорота элементов на нашей планете. Такие его стадии, как фиксация молекулярного азота, денитрификация или минерализация сложных органических веществ, были бы невозможны без участия микроорганизмов. На деятельности микроорганизмов основан целый ряд необходимых человеку производств продуктов питания, различных химических веществ, лекарственных препаратов и т.д. Микроорганизмы используются для очистки окружающей среды от различных природных и антропогенных загрязнений. В то же время многие микроорганизмы являются возбудителями заболеваний человека, животных, растений, а также вызывают порчу продуктов питания и различных промышленных материалов. Представители других научных дисциплин часто используют микроорганизмы в качестве инструментов и модельных систем при проведении экспериментов.

История микробиологии

История микробиологии исчисляется примерно с 1661 г, когда голландский торговец сукном Антони ван Левенгук (1632-1723) впервые описал микроскопические существа, наблюдаемые им в микроскоп собственного изготовления. В своих микроскопах Левенгук использовал одну короткофокусную линзу, закрепленную в металлическую оправу. Перед линзой находилась толстая игла, к кончику которой прикреплялся исследуемый объект. Иглу можно было передвигать относительно линзы с помощью двух фокусирующих винтов. Линзу следовало приложить к глазу и через нее рассматривать объект на кончике иглы. Будучи по складу характера любознательным и наблюдательным человеком, Левенгук изучил различные субстраты естественного и искусственного происхождения, рассмотрел под микроскопом огромное количество объектов и сделал очень точные рисунки. Он исследовал микроструктуру растительных и животных клеток, сперматозоиды и эритроциты, строение сосудов растений и животных, особенности развития мелких насекомых. Достигнутое увеличение (50-300 раз) позволило Левенгуку увидеть микроскопические существа, названные им «зверушками», описать их основные группы, а также сделать вывод о том, что они вездесущи. Свои заметки о представителях мира микробов (простейших, плесневых грибах и дрожжах, различных формах бактерий - палочковидных, сферических, извитых), о характере их движения и устойчивых сочетаниях клеток Левенгук сопровождал тщательными зарисовками и в виде писем направлял в Английское Королевское общество, которое имело целью поддерживать обмен информацией среди научной общественности. После смерти Левенгука изучение микроорганизмов долго сдерживалось несовершенством увеличительных приборов. Только к середине XIX века были созданы модели световых микроскопов, позволившие другим исследователям детально описать основные группы микроорганизмов. Этот период истории микробиологии можно условно назвать описательным.

Физиологический этап развития микробиологии начался приблизительно с середины 19-го века и связан он с работами французского химика-кристаллографа Луи Пастера (1822-1895) и немецкого сельского врача Роберта Коха (1843-1910). Эти ученые положили начало экспериментальной микробиологии и существенно обогатили методологический арсенал этой науки.

При исследовании причин прокисания вина Л.Пастер установил, что сбраживание виноградного сока и образование спирта осуществляют дрожжи, а порчу вина (появление посторонних запахов, вкусов и ослизнение напитка) вызывают другие микробы. Для предохранения вина от порчи Пастер предложил способ тепловой обработки (нагревание до 70 о С) сразу после брожения, чтобы уничтожить посторонние бактерии. Такой прием, применяемый и сегодня для предохранения молока, вина и пива, получил название «пастеризация».

Исследуя другие виды брожения, Пастер показал, что каждое брожение имеет главный конечный продукт и вызывается микроорганизмами определенного типа. Эти исследования привели к открытию неизвестного ранее образа жизни - анаэробного (бескислородного) метаболизма , при котором кислород не только не нужен, но и часто вреден для микроорганизмов. В то же время для значительного числа аэробных микроорганизмов кислород является необходимым условием их существования. Изучая на примере дрожжей возможность переключения с одного типа обмена веществ на другой, Л.Пастер показал, что анаэробный метаболизм энергетически менее выгоден. Микроорганизмы, способные к такому переключению, он назвал факультативными анаэробами .

Пастер окончательно опроверг возможность самозарождения живых существ из неживой материи в обычных условиях. К тому времени вопрос о самозарождении животных и растений из неживого материала был уже решен отрицательно, а относительно микроорганизмов спор продолжался. Опыты итальянского ученого Ладзаро Спалланцани и французского исследователя Франсуа Аппера по длительному прогреванию питательных субстратов в герметичных сосудах для предотвращения развития микробов подвергались критике сторонников теории самозарождения: они считали, что именно укупорка сосудов препятствует проникновению внутрь некой «жизненной силы». Пастером был проведен изящный эксперимент, поставивший точку в этой дискуссии. Прогретый питательный бульон был помещен в открытый стеклянный сосуд, горлышко которого было вытянуто трубкой и S-образно изогнуто. Воздух мог беспрепятственно проникать внутрь колбы, а клетки микроорганизмов оседали в нижнем изгибе горлышка и не попадали в бульон. В этом случае бульон оставался стерильным неопределенно долго. Если же колбу наклоняли так, что жидкость заполняла нижний изгиб, а затем бульон возвращали обратно в сосуд, то внутри быстро начинали развиваться микроорганизмы.

Работы по изучению «болезней» вина позволили ученому предположить, что возбудителями инфекционных заболеваний животных и человека также могут быть микроорганизмы. Пастер выделил возбудителей ряда болезней и изучил их свойства. Опыты с патогенными микроорганизмами показали, что при определенных условиях они становились менее агрессивными и не убивали зараженный организм. Пастер сделал вывод о возможности прививать ослабленных возбудителей здоровым и зараженным людям и животным, чтобы стимулировать защитные силы организма в борьбе с инфекцией. Ученый назвал материал для прививок вакциной, а сам процесс - вакцинацией. Пастер разработал способы прививок против ряда опасных заболеваний животных и человека, в том от бешенства.

Роберт Кох, начав с доказательства бактериальной этиологии сибирской язвы, затем выделил возбудителей многих болезней в чистой культуре. В своих экспериментах он использовал мелких подопытных животных, а также наблюдал под микроскопом развитие бактериальных клеток в кусочках тканей зараженных мышей. Кохом были разработаны способы выращивания бактерий вне организма, различные методы окраски препаратов для микроскопии и предложена схема получения чистых культур микроорганизмов на твердых средах в виде отдельных колоний. Эти простые приемы до сих пор используются микробиологами всего мира. Кох окончательно сформулировал и экспериментально подтвердил постулаты, доказывающие микробное происхождение заболевания:

  1. микроорганизм должен присутствовать в материале больного;
  2. выделенный в чистой культуре, он должен вызывать ту же болезнь у экспериментально зараженного животного;
  3. из этого животного возбудитель должен быть опять выделен в чистую культуру, и две эти чистые культуры должны быть одинаковыми.

Эти правила получили в дальнейшем название «триада Коха». При исследовании возбудителя сибирской язвы ученый наблюдал образование клетками особых плотных телец (спор). Кох пришел к выводу, что устойчивость этих бактерий в окружающей среде связана со способностью к спорообразованию. Именно споры в течение длительного времени способны заражать скот и в тех местах, где ранее находились больные животные или устраивались скотомогильники.

В 1909 г. за труды по иммунитету русский физиолог Илья Ильич Мечников (1845-1916) и немецкий врач-биохимик Пауль Эрлих (1854—1915) получили Нобелевскую премию по физиологии и медицине.

И.И.Мечников разработал фагоцитарную теорию иммунитета, рассматривавшую процесс поглощения лейкоцитами животных чужеродных агентов как защитную реакцию макроорганизма. Инфекционное заболевание представлялось в этом случае как противостояние патогенных микроорганизмов и фагоцитов организма-хозяина, а выздоровление означало «победу» фагоцитов. В дальнейшем, работая в бактериологических лабораториях сначала в Одессе, а потом в Париже, И.И.Мечников продолжал изучение фагоцитоза, а также принимал участие в исследовании возбудителей сифилиса, холеры и других инфекционных заболеваний и разработке ряда вакцин. На склоне лет И.И.Мечников заинтересовался проблемами старения человека и обосновал полезность использования в пище больших количеств кисломолочных продуктов, содержащих «живые» закваски. Он пропагандировал использование суспензии молочнокислых микроорганизмов, утверждая, что такие бактерии и образуемые ими молочнокислые продукты способны подавлять гнилостные микроорганизмы, производящие вредные шлаки в кишечнике человека.

П.Эрлих, занимаясь экспериментальной медициной и биохимией лекарственных соединений, сформулировал гуморальную теорию иммунитета, согласно которой макроорганизм для борьбы с инфекционными агентами производит специальные химические вещества - антитела и антитоксины, нейтрализующие микробные клетки и выделяемые ими агрессивные субстанции. П.Эрлих разработал методы лечения ряда инфекционных заболеваний и участвовал в создании препарата для борьбы с сифилисом (сальварсана). Ученый первым описал феномен приобретения патогенными микроорганизмами устойчивости к лекарственным препаратам.

Русский эпидемиолог Николай Федорович Гамалея (1859-1948) изучал пути передачи и распространения таких серьезных инфекций как бешенство, холера, оспа, туберкулез, сибирская язва и некоторые заболевания животных. Им усовершенствован разработанный Л.Пастером способ профилактических прививок и предложена вакцина против холеры человека. Ученый разработал и внедрил комплекс санитарно-гигиенических и противоэпидемических мероприятий по борьбе с чумой, холерой, оспой, сыпным и возвратным тифами и другими инфекциями. Н.Ф.Гамалея открыл вещества, растворяющие бактериальные клетки (бактериолизины), описал явление бактериофагии (взаимодействия вирусов и бактериальной клетки) и внес существенный вклад в изучение микробных токсинов.

Признание огромной роли микроорганизмов в биологически важных круговоротах элементов на Земле связано с именами русского ученого Сергея Николаевича Виноградского (1856-1953) и голландского исследователя Мартинуса Бейеринка (1851-1931). Эти ученые изучали группы микроорганизмов, способных осуществлять химические превращения основных элементов и участвовать в биологически важных круговоротах на Земле. С.Н.Виноградский работал с микроорганизмами, использующими неорганические соединения серы, азота, железа и открыл уникальный образ жизни, свойственный только прокариотам, при котором для получения энергии используется восстановленное неорганическое соединение, а для биосинтезов - углерод углекислого газа. Ни животные, ни растения не могут существовать таким способом.

С.Н.Виноградский и М.Бейеринк независимо друг от друга показали способность некоторых прокариот использовать атмосферный азот в своем обмене веществ (фиксировать молекулярный азот). Ими были выделены в виде чистых культур свободноживущие и симбиотические микробы-азотфиксаторы и отмечена глобальная роль таких микроорганизмов в цикле азота. Только прокариотические микроорганизмы могут переводить газообразный азот в связанные формы, используя его для синтеза компонентов клетки. После отмирания азотфиксаторов соединения азота становятся доступными для других организмов. Таким образом, азотфиксирующие микроорганизмы замыкают биологический круговорот азота на Земле.

На рубеже XIX-XX веков русский физиолог растений и микробиолог Дмитрий Иосифович Ивановский (1864-1920) открыл вирус табачной мозаики, тем самым обнаружив особую группу биологических объектов, не имеющих клеточного строения. При исследовании инфекционной природы мозаичной болезни табака ученый попытался очистить сок растения от возбудителя, пропуская его через бактериальный фильтр. Однако после этой процедуры сок был способен заражать здоровые растения, т.е. возбудитель оказался гораздо меньше всех известных микроорганизмов. В дальнейшем оказалось, что целый ряд известных заболеваний вызывается подобными возбудителями. Их назвали вирусами. Увидеть вирусы удалось только в электронный микроскоп. Вирусы являются особой группой биологических объектов, не имеющих клеточного строения, изучением которых в настоящее время занимается наука вирусология.

В 1929 г. английским бактериологом и иммунологом Александром Флемингом (1881-1955) был открыт первый антибиотик пенициллин. Ученый интересовался вопросами развития инфекционных болезней и действия на них различных химических препаратов (сальварсана, антисептиков). Во время Первой мировой войны в госпиталях раненые сотнями умирали от заражения крови. Повязки с антисептиками лишь немного облегчали состояние больных. Флеминг поставил опыт, создав модель рваной раны из стекла и заполнив ее питательной средой. В качестве «микробного загрязнения» он использовал навоз. Промывая стеклянную «рану» раствором сильного антисептика и затем заполняя ее чистой средой Флеминг показал, что антисептики не убивают микроорганизмы в неровностях «раны» и не останавливают инфекционный процесс. Осуществляя множество посевов на твердые среды в чашках Петри, ученый проверял антимикробный эффект различных выделений человека (слюны, слизи, слезной жидкости) и открыл лизоцим, убивающий некоторые болезнетворные бактерии. Чашки с посевами сохранялись Флемингом длительное время и многократно просматривались. В тех чашках, куда случайно попали споры грибов и выросли колонии плесени, ученый заметил отсутствие роста бактерий вокруг этих колоний. Специально поставленные эксперименты показали, что вещество, выделяемое плесневым грибом из рода Penicillium губительно для бактерий, но не опасно для подопытных животных. Флеминг назвал это вещество пенициллином. Использование пенициллина в качестве лекарства стало возможным только после выделения его из питательного бульона и получения в химически чистом виде (в 1940 г.), что в дальнейшем привело к разработке целого класса лекарственных препаратов, названных антибиотиками. Начались активные поиски новых продуцентов антимикробных веществ и выделение новых антибиотиков. Так, в 1944 г. американский микробиолог Зельман Ваксман (1888-1973) получил с помощью ветвящихся бактерий рода Streptomyces широко применяемый антибиотик стрептомицин.

Ко второй половине XIX века микробиологами был накоплен огромный материал, свидетельствующий о чрезвычайном разнообразии типов микробного обмена веществ. Изучению многообразия жизненных форм и выявлению их общих черт посвящены работы голландского микробиолога и биохимика Алберта Яна Клюйвера (1888-1956) и его учеников. Под его руководством было проведено сравнительное изучение биохимии далеко отстоящих друг от друга систематических и физиологических групп микроорганизмов, а также анализ данных физиологии и генетики. Эти работы позволили делать вывод об однотипности макромолекул, составляющих все живое, и об универсальности биологической «энергетической валюты» - молекул АТФ. Разработка общей схемы метаболических путей в значительной степени базируется на исследованиях фотосинтеза высших растений и бактерий, проведенных учеником А.Я.Клюйвера Корнелиусом ван Нилем (1897-1985). К. ван Ниль изучил обмен веществ различных фотосинтезирующих прокариот и предложил обобщающее суммарное уравнение фотосинтеза: CO 2 +H 2 A+ һν → (CH 2 O) n +A, где H 2 A - либо вода, либо другое окисляемое вещество. Такое уравнение предполагало, что именно вода, а не углекислый газ, разлагается при фотосинтезе с выделением кислорода. К середине XX века выводы А.Я.Клюйвера и его учеников (в частности, К. ван Ниля) легли в основу принципа биохимического единства жизни.

Развитие отечественной микробиологии представлено различными направлениями и деятельностью многих известных ученых. Целый ряд научных учреждений нашей страны носит имена многих из них. Так, Лев Семенович Ценковский (1822-1877) изучил большое число простейших, микроводорослей, низших грибов и сделал вывод об отсутствии четкой границы между одноклеточными животными и растениями. Он также разработал способ прививки против сибирской язвы с применением «живой вакцины Ценковского» и организовал пастеровскую станцию вакцинации в Харькове. Георгий Норбертович Габричевский (1860-1907) предложил способ лечения дифтерии с помощью сыворотки и участвовал в создании производства бактериальных препаратов в России. Ученик С.Н.Виноградского Василий Леонидович Омелянский (1867-1928) исследовал микроорганизмы, участвующие в превращениях соединений углерода, азота, серы и в процессе анаэробного разложения целлюлозы. Его работы расширили представления о деятельности микроорганизмов почвы. В.Л.Омелянский предложил схемы круговоротов биогенных элементов в природе. Георгий Адамович Надсон (1867-1939) сначала занимался микробной геохимической деятельностью и воздействием различных повреждающих факторов на микробные клетки. В дальнейшем его работы были посвящены изучению наследственности и изменчивости микроорганизмов и получению устойчивых искусственных мутантов низших грибов под действием излучений. Одним из основоположников морской микробиологии является Борис Лаврентьевич Исаченко (1871-1948). Им была высказана гипотеза о биогенном происхождении месторождений серы и кальция. Владимир Николаевич Шапошников (1884-1968) является основателем отечественной технической микробиологии. Его работы по физиологии микроорганизмов посвящены изучению различных видов брожения. Им открыто явление двухфазности ряда микробиологических процессов и разработка способов управления ими. Исследования В.Н.Шапошникова стали основой для организации в СССР микробиологических производств органических кислот и растворителей. Работы Зинаиды Виссарионовны Ермольевой (1898-1974) внесли существенный вклад в физиологию и биохимию микроорганизмов, медицинскую микробиологию, а также способствовали становлению микробиологического производства ряда отечественных антибиотиков. Так, она исследовала возбудители холеры и другие холероподобные вибрионы, их взаимодействие с организмом человека и предложила санитарные нормы хлорирования водопроводной воды в качестве средства профилактики этого опасного заболевания. Ею был создан и применен для профилактики препарат холерного бактериофага, а в дальнейшем - и комплексный препарат против холеры, дифтерии и брюшного тифа. Применение лизоцима в медицинской практике основано на работах З.В.Ермольевой по обнаружению новых растительных источников лизоцима, установлению его химической природы, разработке метода выделения и концентрирования. Получение отечественного штамма продуцента пенициллина и организация промышленного производства препарата пенициллина-крустозина в годы Великой Отечественной войны - это неоценимая заслуга З.В.Ермольевой. Эти исследования явились импульсом для поиска и селекции отечественных продуцентов других антибиотиков (стрептомицина, тетрациклина, левомицетина, экмолина). Работы Николая Александровича Красильникова (1896-1973) посвящены изучению мицелиальных прокариотических микроорганизмов - актиномицетов. Подробное исследование свойств этих микроорганизмов позволило Н.А.Красильникову создать определитель актиномицетов. Ученый был одним из первых исследователей явления антагонизма в мире микробов, что позволило ему выделить актиномицетный антибиотик мицетин. Н.А.Красильников изучал также взаимодействие актиномицетов с другими бактериями и высшими растениями. Его работы по почвенной микробиологии посвящены роли микроорганизмов в почвообразовании, распределению их в почвах и влиянию на плодородие. Ученица В.Н.Шапошникова, Елена Николаевна Кондратьева (1925-1995) возглавляла изучение физиологии и биохимии фотосинтезирующих и хемолитотрофных микроорганизмов. Ею подробно проанализированы особенности метаболизма таких прокариот и выявлены общие закономерности фотосинтеза и углеродного обмена. Под руководством Е.Н.Кондратьевой был открыт новый путь автотрофной фиксации СО 2 у зеленых несерных бактерий, проведено выделение и подробное изучение штаммов фототрофных бактерий нового семейства. В ее лаборатории была создана уникальная коллекция бактерий-фототрофов. Е.Н.Кондратьева была инициатором исследований метаболизма микроорганизмов-метилотрофов, использующих в своем метаболизме одноуглеродные соединения.

В XX веке микробиология полностью сложилась как самостоятельная наука. Дальнейшее ее развитие происходило с учетом открытий, сделанных в других областях биологии (биохимии, генетике, молекулярной биологии и т.д.). В настоящее время многие микробиологические исследования проводятся совместно специалистами разных биологических дисциплин. Многочисленные достижения микробиологии конца XX - начала XXI веков будут кратко изложены в соответствующих разделах учебника.

Основные направления в современной микробиологии.

Уже к концу XIX века микробиология в зависимости от выполняемых задач начинает подразделяться на ряд направлений. Так, исследования основных законов существования микроорганизмов и их разнообразия относят к общей микробиологии, а частная микробиология изучает особенности их разных групп. Задача природоведческой микробиологии - выявление способов жизнедеятельности микроорганизмов в естественных местах обитания и их роли в природных процессах. Особенности болезнетворных микроорганизмов, вызывающих заболевания человека и животных, и их взаимодействие с организмом хозяина изучают медицинская и ветеринарная микробиология, а микробные процессы в земледелии и животноводстве исследует сельскохозяйственная микробиология. Почвенная, морская, космическая и т.д. микробиология - это разделы, посвященные свойствам специфических для этих природных сред микроорганизмам и процессам, с ними связанным. И наконец, промышленная (техническая) микробиология как часть биотехнологии изучает свойства микроорганизмов, используемых для различных производств. В то же время от микробиологии отделяются новые научные дисциплины, занимающиеся изучением определенных более узких групп объектов (вирусология, микология, альгология и др.). В конце XX века усиливается интеграция биологии наук и многие исследования происходят на стыке дисциплин, образуя такие направления, как молекулярная микробиология, генная инженерия и др.

В современной микробиологии можно выделить несколько основных направлений. С развитием и совершенствованием методологического арсенала биологии активизировались фундаментальные микробиологические исследования, посвященные выяснению путей метаболизма и способов их регуляции. Бурно развивается систематика микроорганизмов, ставящая цель создать такую классификацию объектов, которая отражала бы место микроорганизмов в системе всего живого, родственные связи и эволюцию живых существ, т.е. осуществить построение филогенетического древа. Изучение роли микроорганизмов в природных процессах и антропогенных системах (экологическая микробиология) крайне актуально в связи с повышенным интересом к современным экологическим проблемам. Значительное внимание привлекают исследования популяционной микробиологии, занимающейся выяснением природы межклеточных контактов и способов взаимодействия клеток в популяции. Не теряют актуальности те направления микробиологии, которые связаны с применением микроорганизмов в человеческой деятельности.

Дальнейшее развитие микробиологии в XXI веке наряду с накоплением фундаментальных знаний призвано помочь решению ряда глобальных проблем человечества. В результате варварского отношения к природе и повсеместного загрязнения окружающей среды антропогенными отходами возник значительный дисбаланс в круговоротах веществ на нашей планете. Только микроорганизмы, обладая широчайшими метаболическими возможностями, высокой пластичностью обмена веществ и значительной устойчивостью к повреждающим факторам, могут преобразовать стойкие и токсичные загрязнения в безвредные для природы соединения, а в ряде случаев и в пригодные для дальнейшего использования человеком продукты. Тем самым понизится выброс так называемых «парниковых газов» и стабилизируется газовый состав атмосферы Земли. Осуществляя защиту окружающей среды от загрязнений, микроорганизмы одновременно будут способствовать постоянству глобального круговорота элементов. Микроорганизмы, развиваясь на отходах промышленности и сельского хозяйства, могут служить альтернативными источниками топлива (биогаза, биоэтанола и других спиртов, биоводорода и т.д.). Это позволит решить энергетические проблемы человечества, связанные с истощением полезных ископаемых (нефти, угля, природного газа, торфа). Восполнение продовольственных ресурсов (особенно белковых) возможно путем введения в рацион питания дешевой микробной биомассы быстрорастущих штаммов, полученной на отходах пищевой промышленности или на очень простых средах. Сохранению здоровья человеческой популяции будут способствовать не только тщательное изучение свойств патогенных микроорганизмов и выработка методов защиты от них, но и переход на «природные лекарства» (пробиотики), повышающие иммунный статус человеческого организма.

Наука о формах, сочетаниях и размерах клеток микроорганизмов, их дифференциации, а также размножении и развитии. - наука о многообразии микроорганизмов и их классификации по степени родства. В настоящее время в основу систематики микроорганизмов положены молекулярно-биологические методы.- наука об обмене веществ (метаболизме) микроорганизмов, включающая способы потребления питательных веществ, их разложение, синтез веществ, а также способы получения микроорганизмами энергии в результате процессов брожения , анаэробного дыхания , аэробного дыхания и фотосинтеза .

  • Экология микроорганизмов - наука, изучающая влияние факторов внешней среды на микроорганизмы, взаимоотношения микроорганизмов с другими микроорганизмами и роль микроорганизмов в экосистемах.
  • Прикладная микробиология и биотехнология микроорганизмов - наука о практическом применении микроорганизмов, производстве биологически активных веществ (антибиотиков, ферментов, аминокислот, низкомолекулярных регуляторных соединений, органических кислот) и биотоплива (биогазы, спирты) с помощью микроорганизмов, условиях образования и способы регуляции образования данных продуктов.
  • Рекомендуемая литература

    Поль де Крюи. Охотники за микробами. Научно-популярное издание.

    Гучев М.В., Минеева Л.А. Микробиология. Учебник для ВУЗов.

    Нетрусов А.И., Котова И.Б. Общая микробиология. Учебник для ВУЗов.

    Нетрусов А.И., Котова И.Б. Микробиология. Учебник для ВУЗов.

    Практикум по микробиологии. Под ред. А.И. Нетрусова. Учебное пособие для ВУЗов.

    Экология микроорганизмов. Под ред. А.И. Нетрусова. Учебное пособие для ВУЗов.

    Заварзин Г.А. Лекции по природоведческой микробиологии. Научное издание.

    Колотилова Н.Н., Заварзин Г.А. Введение в природоведческую микробиологию. Учебное пособие для ВУЗов.

    Кондратьева Е.Н. Автотрофные прокариоты. Учебное пособие для ВУЗов.

    Егоров Н.С. Основы учения об антибиотиках. Учебник для ВУЗов.

    Промышленная микробиология. Под ред. Н.С. Егорова. Учебное пособие для ВУЗов.