Определение селекции, основные методы. Основные методы селекции растений

Основные методы селекции растений

Классическими методами селœекции растений были и остаются гибридизация и отбор.
Размещено на реф.рф
Различают две основные формы искусственного отбора: массовый и индивидуальный .

1. Массовый отбор применяют при селœекции перекрестноопыляемых растений, таких, как рожь, кукуруза, подсолнечник. При этом выделяют группу растений, обладающих ценными признаками. В этом случае сорт представляет собой популяцию, состоящую из гетерозиготных особей, и каждое семя даже от одного материнского растения обладает уникальным генотипом. С помощью массового отбора сохраняются и улучшаются сортовые качества, но результаты отбора неустойчивы в силу случайного перекрестного опыления.

2. Индивидуальный отбор эффективен для самоопыляемых растений (пшеницы, ячменя, гороха). В этом случае потомство сохраняет признаки родительской формы, является гомозиготным и принято называть чистой линией . Чистая линия - потомство одной гомозиготной самоопыленной особи. У любой особи тысячи генов, и так как происходят мутационные процессы, то абсолютно гомозиготных особей в природе практически не бывает. Мутации чаще всœего рецессивны. Под контроль естественного и искусственного отбора они попадают только тогда, когда переходят в гомозиготное состояние.

3. Естественный отбор в селœекции играет определяющую роль. На любое растение в течение всœей его жизни действует целый комплекс факторов окружающей среды, и оно должно быть устойчивым к вредителям и болезням, приспособлено к определœенному температурному и водному режиму.

4. Инбридинг используют при самоопылении перекрестноопыляемых растений , к примеру, для получения чистых линий кукурузы. При этом подбирают такие растения, гибриды которых дают максимальный эффект гетерозиса - жизненной силы, образуют початки более крупные, чем початки родительских форм. От них получают чистые линии - на протяжении ряда лет, производят принудительное самоопыление - срывают метелки с выбранных растений и, когда появляются рыльца пестиков, их опыляют пыльцой этого же растения. Изоляторами предохраняют соцветия от попадания чужой пыльцы. У гибридов многие рецессивные неблагоприятные гены при этом переходят в гомозиготное состояние, и это приводит к снижению их жизнеспособности, к депрессии. Далее скрещивают чистые линии между собой для получения гибридных семян, дающих эффект гетерозиса.

Эффект гетерозиса объясняется двумя основными гипотезами. Гипотеза доминирования предполагает, что эффект гетерозиса зависит от количества доминантных генов в гомозиготном или гетерозиготном состоянии. Чем больше в генотипе генов в доминантном состоянии - тем больший эффект гетерозиса, и первое гибридное поколение дает прибавку урожая до 30% (рис. 339).

ААbbCCdd x aaBBccDD

Гипотеза сверхдоминирования объясняет явление гетерозиса эффектом сверхдоминирования: иногда гетерозиготное состояние по одному или нескольким генам дает гибриду превосходство над родительскими формами по массе и продуктивности. Но начиная со второго поколения эффект гетерозиса затухает, так как часть генов переходит в гомозиготное состояние.

АА 2Аа аа

5. Перекрестное опыление самоопылителœей дает возможность сочетать свойства различных сортов. Рассмотрим, как это практически выполняется при создании новых сортов пшеницы. У цветков растения одного сорта удаляются пыльники, рядом в банке с водой ставится растение другого сорта͵ и растения двух сортов накрываются общим изолятором. В результате получают гибридные семена, сочетающие нужные селœекционеру признаки разных сортов.

6. Очень перспективен метод получения полиплоидов, у растений полиплоиды обладают большей массой вегетативных органов, имеют более крупные плоды и семена. Многие культуры представляют из себяестественные полиплоиды: пшеница, картофель, выведены сорта полиплоидной гречихи, сахарной свеклы.

7. Отдаленная гибридизация - скрещивание растений, относящихся к разным видам. Но отдаленные гибриды обычно стерильны, так как у них нарушается мейоз (два гаплоидных набора хромосом разных видов не конъюгируют), и не образуются гаметы.

В 1924 году советский ученый Г.Д.Карпеченко получил плодовитый межродовой гибрид. Он скрестил редьку (2n = 18 редечных хромосом) и капусту (2n = 18 капустных хромосом). У гибрида в диплоидном наборе было 18 хромосом: 9 редечных и 9 капустных, но при мейозе редечные и капустные хромосомы не конъюгировали, гибрид был стерильным.

С помощью колхицина Г.Д.Карпеченко удалось удвоить хромосомный набор гибрида, полиплоид стал иметь 36 хромосом, при мейозе редечные (9 + 9) хромосомы конъюгировали с редечными, капустные (9 + 9) с капустными. Плодовитость была восстановлена. Таким способом были получены пшенично-ржаные гибриды (тритикале), (рис. 341) пшенично-пырейные гибриды и др.
Размещено на реф.рф
Виды, у которых произошло объединœение разных геномов в одном организме, а

затем их кратное увеличение, называются аллополиплоидами.

8. Использование соматических мутаций применимо для селœекции вегетативно размножающихся растений, что использовал в своей работе еще И.В.Мичурин. С помощью вегетативного размножения можно сохранить полезную соматическую мутацию. Вместе с тем, только с помощью вегетативного размножения сохраняются свойства многих сортов плодово-ягодных культур.

9. Экспериментальный мутагенез основан на открытии воздействия различных излучений для получения мутаций и на использование химических мутагенов. Мутагены позволяют получить большой спектр разнообразных мутаций, сейчас в мире созданы более тысячи сортов, ведущих родословную от отдельных мутантных растений, полученных после воздействия мутагенами.

Многие методы селœекции растений были предложены И.В.Мичуриным. С помощью метода ментора И.В.Мичурин добивался изменения свойств гибрида в нужную сторону. К примеру, в случае если у гибрида нужно было улучшить вкусовые качества, в его крону прививались черенки с родительского организма, имеющего хорошие вкусовые качества; или гибридное растение прививали на подвой, в сторону которого нужно было изменить качества гибрида. И.В.Мичурин указывал на возможность управления доминированием определœенных признаков при развитии гибрида. Для этого на ранних стадиях развития крайне важно воздействие определœенными внешними факторами. К примеру, в случае если гибриды выращивать в открытом грунте, на бедных почвах, повышается их морозостойкость.

Основные методы селекции растений - понятие и виды. Классификация и особенности категории "Основные методы селекции растений" 2017, 2018.

Основными методами селекции являются отбор, гибридизация (с использованием гетерозиса и цитоплазматической мужской стерильности), полиплоидия и мутагенез.

Отбор и его творческая роль

В основе селекционного процесса лежит искусственный отбор . В сочетании с генетическими методами он позволяет создавать сорта, породы и штаммы с заранее определенными признаками и свойствами. В селекции различают два основных типа отбора: массовый и индивидуальный.

Массовый отбор - это выделение группы особей по внешним, фенотипическим признакам без проверки их генотипа. Например, при массовом, или стихийном, отборе из всей популяции кур той или иной породы в хозяйствах оставляют для размножения птиц с яйценоскостью 200-250 яиц, живой массой не менее 1,5 кг, определенной окраски, не проявляющих инстинкты высиживания и т. д. Все остальные куры выбраковываются. При этом потомство каждой курицы и петуха оценивается только по фенотипу. Следовательно, массовый отбор может дать хорошие результаты только при высоком коэффициенте наследуемости ценных признаков, избранных селекционером.

Массовый отбор наиболее эффективен в отношении качественных признаков, контролируемых одним или несколькими генами. Вместе с тем он редко бывает успешным по полигенным признакам с низким коэффициентом наследования. В этом случае необходимо применять индивидуальный, или методический, отбор.

При индивидуальном отборе (по генотипу) получают и оценивают потомство каждого отдельного растения или животного в ряду поколений при обязательном контроле наследования интересующих селекционера признаков. На последующих этапах отбора используют только тех особей, которые дали наибольшее число потомков с высокими показателями. В результате появляется возможность оценивать наследственные качества отдельных особей, т. е. способность передавать свойства потомству.

Значение индивидуального отбора особенно велико в тех отраслях сельскохозяйственного производства, где имеется возможность получения от одного организма большого количества потомков. Так, используя искусственное осеменение, от одного быка можно получить до 35000 телят с помощью глубокого замораживания семени, сохраняющегося долгие годы. Поэтому уже теперь во многих странах мира существуют банки спермы животных с ценными генотипами.

Отбор в селекции отличается наибольшей эффективностью в том случае, если он сочетается с определенными типами скрещиваний.

Методы гибридизации (типы скрещивания) в селекции

Все разнообразие типов скрещиваний сводится к инбридингу и аутбридингу. Инбридинг - это близкородственное (внутрипородное или внутрисортовое), а аутбридинг - неродственное (межпородное или межсортовое) скрещивание.

При инбридинге в качестве исходных форм используются братья и сестры или родители и потомство (отец - дочь, мать - сын, двоюродные братья - сестры и т. д.). Этот тип скрещивания применяют в тех случаях, когда желают перевести большинство генов породы в гомозиготное состояние и, как следствие, закрепить хозяйственно ценные признаки, сохраняющиеся у потомков. Такое скрещивание в определенной степени аналогично самоопылению у растений, которое также приводит к повышению гомозиготности.

Вместе с тем при инбридинге часто наблюдается ослабление животных, их постепенное вырождение, обусловленное гомозиготизацией рецессивных аллелей. При этом гомозиготизация по генам, контролирующим изучаемый признак, происходит тем быстрее, чем более близкородственные скрещивания используют при инбридинге. Для избежания этого явления необходимо проводить строгий отбор особей, обладающих ценными хозяйственными признаками.

У растений чистые линии также обладают пониженной жизнеспособностью, что, вероятно, связано с переходом в гомозиготное состояние всех рецессивных мутаций, которые в основном являются вредными.

Чистые линии, полученные в результате инбридинга, отличаются не только различными признаками, но и степенью снижения жизнеспособности. Если эти чистые линии скрещивать между собой, то обычно наблюдается эффект гетерозиса .

Неродственное скрещивание между особями одной породы или между особями разных пород (кроссбридинг) животных позволяет поддерживать свойства или улучшать их в ряду следующих поколений гибридов. Аутбридинг повышает уровень гетерозиготности потомства и гетерогенности популяции.

Полиплоидия и отдаленная гибридизация

При создании новых сортов растений селекционерами широко используется метод автополиплоидии , который приводит к увеличению размеров клеток и всего растения вследствие умножения числа наборов хромосом. Кроме того, избыток хромосом повышает их устойчивость к патогенным организмам (вирусам, грибам, бактериям) и ряду других неблагоприятных факторов, например к радиации: при повреждении одной или даже двух гомологичных хромосом остаются неповрежденными другие такие же. Полиплоидные особи жизнеспособнее диплоидных.

Около 80 % современных культурных растений являются полиплоидами. Среди них хлебные злаки, овощные и плодово-ягодные культуры, цитрусовые, технические, лекарственные и декоративные растения, которые гораздо более урожайны, чем исходные диплоидные сорта. Так, триплоидная сахарная свекла отличается от обычной не только большей урожайностью вегетативной массы и более крупными размерами корнеплодов, но и повышенной их сахаристостью, а также устойчивостью к болезням. Однако триплоиды стерильны, поэтому необходимо каждый раз получать гибридные семена от скрещивания диплоидной и тетраплоидной форм. Успешному решению этой проблемы способствовало открытие мужской стерильности свеклы. Стерильность триплоидных гибридов может иметь положительное значение при получении бессемянных плодов, например винограда и арбуза.

Ценные результаты дает использование в селекции явления аллополиплоидии, основой которого служит метод отдаленной гибридизации , т. е. скрещивания организмов, относящихся к разным видам и даже родам. Например, получены межвидовые полиплоидные гибриды капусты и редьки, ржи и пшеницы. Гибридизация пшеницы (Triticum) и ржи (Secale) позволила получить ряд форм, объединенных общим названием тритикале . Они обладают высокой урожайностью пшеницы и зимостойкостью и неприхотливостью ржи, устойчивостью ко многим болезням, в том числе к линейной ржавчине, являющейся одним из главных факторов, ограничивающих урожайность пшеницы.

На основе гибридизации пшеницы и пырея российским академиком Н. В. Цициным получены пшенично-пырейные гибриды, обладающие высокой урожайностью и устойчивостью к полеганию. Однако отдаленные гибриды, как правило, бесплодны. Это связано с содержанием в геноме различных хромосом, которые в мейозе не конъюгируют. Для восстановления плодовитости у межвидовых гибридов в 1924 г. советский генетик Г. Д. Карпеченко предложил использовать удвоение числа хромосом (полиплоидию) у отдаленных гибридов.

Г. Д. Карпеченко проводил скрещивание редьки и капусты. Число хромосом у этих растений одинаково (2n = 18). Соответственно их гаметы несут по 9 хромосом. Гибрид капусты и редьки имеет 18 хромосом, но он бесплоден, так как хромосомы капусты и редьки в мейозе не конъюгируют, поэтому процесс образования гамет не может протекать нормально. В результате удвоения числа хромосом в бесплодном гибриде оказалось 36 хромосом, слагающихся из двух полных диплоидных наборов редьки и капусты. Это создало нормальные возможности для мейоза; хромосомы капусты и хромосомы редьки конъюгировали между собой. Каждая гамета несла по одному гаплоидному набору редьки и капусты (9 + 9 = 18). В зиготе вновь оказалось 36 хромосом; межвидовой гибрид стал плодовитым. По фенотипу этот новый растительный организм совмещал признаки редьки и капусты, например в строении стручка.

Получение экспериментальным путем полиплоидных животных представляет большую трудность, поэтому такие формы животных - редкость. Так, советскому ученому генетику Б. Л. Астаурову путем межвидовой гибридизации удалось получить полиплоидную форму тутового шелкопряда. На сегодняшний день есть уже полиплоидные рыбы, птицы (например, куры), однако внедрение полиплоидных пород животных в практику сельского хозяйства - дело будущего.

Спонтанный и индуцированный мутагенез

Спонтанные мутанты используются преимущественно в селекции растений. Так, на основе мутанта желтого безалкалоидного люпина получено несколько сортов сладкого люпина, которые выращивают на корм скоту. Люпин, содержащий алкалоиды, для этой цели непригоден, поскольку животные его не едят.

Большое число мутантов известно у плодовых культур, которые используются как новые сорта или в гибридизации с другими формами. Один из наиболее известных спонтанных мутантов кукурузы opaque, отличающийся высоким содержанием аминокислоты лизина в зерне, используется для создания так называемых высоколизиновых гибридов кукурузы.

В последние десятилетия во многих странах мира развернуты работы по получению индуцированных мутантов. Индуцированные рентгеновыми лучами мутанты были выделены у многих злаков (ячменя, пшеницы, ржи и др.). Они отличаются не только повышенной урожайностью, но и укороченным побегом. Такие растения устойчивы к полеганию и имеют заметные преимущества при машинной уборке. Кроме того, короткая и прочная соломина позволяет вести дальнейшую селекцию на увеличение размера колоса и массы семян без опасения, что повышение урожая зерна приведет к полеганию растений.

Особенно успешно индуцированный мутагенез применяют в селекции микроорганизмов.

Основными методами селекции являются отбор , гибридизация (с использованием гетерозиса и цитоплазматической мужской стерильности), полиплоидия и мутагенез .

Отбор и его творческая роль . В основе селекционного процесса лежит искусственный отбор . В сочетании с генетическими методами он позволяет создавать сорта, породы и штаммы с заранее определенными признаками и свойствами. В селекции различают два основных типа отбора: массовый и индивидуальный.

Массовый отбор - это выделение группы особей по внешним, фенотипическим признакам без проверки их генотипа. Например, при массовом, или стихийном, отборе из всей популяции кур той или иной породы в хозяйствах оставляют для размножения птиц с яйценоскостью 200-250 яиц, живой массой не менее 1,5 кг, определенной окраски, не проявляющих инстинкты высиживания и т. д. Все остальные куры выбраковываются. При этом потомство каждой курицы и петуха оценивается только по фенотипу. Следовательно, массовый отбор может дать хорошие результаты только при высоком коэффициенте наследуемости ценных признаков, избранных селекционером.

Массовый отбор наиболее эффективен в отношении качественных признаков, контролируемых одним или несколькими генами. Вместе с тем он редко бывает успешным по полигенным признакам с низким коэффициентом наследования. В этом случае необходимо применять индивидуальный, или методический, отбор.

При индивидуальном отборе (по генотипу) получают и оценивают потомство каждого отдельного растения или животного в ряду поколений при обязательном контроле наследования интересующих селекционера признаков. На последующих этапах отбора используют только тех особей, которые дали наибольшее число потомков с высокими показателями. В результате появляется возможность оценивать наследственные качества отдельных особей, т. е. способность передавать свойства потомству.

Значение индивидуального отбора особенно велико в тех отраслях сельскохозяйственного производства, где имеется возможность получения от одного организма большого количества потомков. Так, используя искусственное осеменение, от одного быка можно получить до 35000 телят с помощью глубокого замораживания семени, сохраняющегося долгие годы. Поэтому уже теперь во многих странах мира существуют банки спермы животных с ценными генотипами.

Отбор в селекции отличается наибольшей эффективностью в том случае, если он сочетается с определенными типами скрещиваний.

Методы гибридизации (типы скрещивания) в селекции . Все разнообразие типов скрещиваний сводится к инбридингу и аутбридингу. Инбридинг - это близкородственное (внутрипородное или внутрисортовое), а аутбридинг - неродственное (межпородное или межсортовое) скрещивание.

При инбридинге в качестве исходных форм используются братья и сестры или родители и потомство (отец - дочь, мать - сын, двоюродные братья - сестры и т. д.). Этот тип скрещивания применяют в тех случаях, когда желают перевести большинство генов породы в гомозиготное состояние и, как следствие, закрепить хозяйственно ценные признаки, сохраняющиеся у потомков. Такое скрещивание в определенной степени аналогично самоопылению у растений, которое также приводит к повышению гомозиготности.

Вместе с тем при инбридинге часто наблюдается ослабление животных, их постепенное вырождение, обусловленное гомозиготизацией рецессивных аллелей. При этом гомозиготизация по генам, контролирующим изучаемый признак, происходит тем быстрее, чем более близкородственные скрещивания используют при инбридинге. Для избежания этого явления необходимо проводить строгий отбор особей, обладающих ценными хозяйственными признаками.

У растений чистые линии также обладают пониженной жизнеспособностью, что, вероятно, связано с переходом в гомозиготное состояние всех рецессивных мутаций, которые в основном являются вредными.

Чистые линии, полученные в результате инбридинга, отличаются не только различными признаками, но и степенью снижения жизнеспособности. Если эти чистые линии скрещивать между собой, то обычно наблюдается эффект гетерозиса.

Неродственное скрещивание между особями одной породы или между особями разных пород (кроссбридинг) животных позволяет поддерживать свойства или улучшать их в ряду следующих поколений гибридов. Аутбридинг повышает уровень гетерозиготности потомства и гетерогенности популяции.

Полипюидия и отдаленная гибридизация . При создании новых сортов растений селекционерами широко используется метод автополиплодии , который приводит к увеличению размеров клеток и всего растения вследствие умножения числа наборов хромосом. Кроме того, избыток хромосом повышает их устойчивость к патогенным организмам (вирусам, грибам, бактериям) и ряду других неблагоприятных факторов, например к радиации: при повреждении одной или даже двух гомологичных хромосом остаются неповрежденными другие такие же. Полиплоидные особи жизнеспособнее диплоидных.

Около 80 % современных культурных растений являются полиплоидами. Среди них хлебные злаки, овощные и плодово-ягодные культуры, цитрусовые, технические, лекарственные и декоративные растения, которые гораздо более урожайны, чем исходные диплоидные сорта. Так, триплоидная сахарная свекла отличается от обычной не только большей урожайностью вегетативной массы и более крупными размерами корнеплодов, но и повышенной их сахаристостью, а также устойчивостью к болезням. Однако триплоиды стерильны, поэтому необходимо каждый раз получать гибридные семена от скрещивания диплоидной и тетраплоидной форм. Успешному решению этой проблемы способствовало открытие мужской стерильности свеклы. Стерильность триплоидных гибридов может иметь положительное значение при получении бессемянных плодов, например винограда и арбуза.

Ценные результаты дает использование в селекции явления аллополиплоидии, основой которого служит метод отдаленной гибридизации , т. е. скрещивания организмов, относящихся к разным видам и даже родам. Например, получены межвидовые полиплоидные гибриды капусты и редьки, ржи и пшеницы. Гибридизация пшеницы (Triticum) и ржи (Secale) позволила получить ряд форм, объединенных общим названием тритикале . Они обладают высокой урожайностью пшеницы и зимостойкостью и неприхотливостью ржи, устойчивостью ко многим болезням, в том числе к линейной ржавчине, являющейся одним из главных факторов, ограничивающих урожайность пшеницы.

На основе гибридизации пшеницы и пырея российским академиком Н. В. Цициным получены пшенично-пырейные гибриды, обладающие высокой урожайностью и устойчивостью к полеганию. Однако отдаленные гибриды, как правило, бесплодны. Это связано с содержанием в геноме различных хромосом, которые в мейозе не конъюгируют. Для восстановления плодовитости у межвидовых гибридов в 1924 г. советский генетик Г. Д. Карпеченко предложил использовать удвоение числа хромосом (полиплоидию) у отдаленных гибридов.

Г. Д. Карпеченко проводил скрещивание редьки и капусты. Число хромосом у этих растений одинаково (2п « 18). Соответственно их гаметы несут по 9 хромосом. Гибрид капусты и редьки имеет 18 хромосом, но он бесплоден, так как хромосомы капусты и редьки в мейозе не конъюгируют, поэтому процесс образования гамет не может протекать нормально. В результате удвоения числа хромосом в бесплодном гибриде оказалось 36 хромосом, слагающихся из двух полных диплоидных наборов редьки и капусты. Это создало нормальные возможности для мейоза; хромосомы капусты и хромосомы редьки конъюгировали между собой. Каждая гамета несла по одному гаплоидному набору редьки и капусты (9 + 9 = 18). В зиготе вновь оказалось 36 хромосом; межвидовой гибрид стал плодовитым. По фенотипу этот новый растительный организм совмещал признаки редьки и капусты, например в строении стручка.

Получение экспериментальным путем полиплоидных животных представляет большую трудность, поэтому такие формы животных - редкость. Так, советскому ученому генетику Б. JI. Астаурову путем межвидовой гибридизации удалось получить полиплоидную форму тутового шелкопряда. На сегодняшний день есть уже полиплоидные рыбы, птицы (например, куры), однако внедрение полиплоидных пород животных в практику сельского хозяйства - дело будущего.

Спонтанный и индуцированный мутагенез . Спонтанные мутанты используются преимущественно в селекции растений. Так, на основе мутанта желтого безалкалоидного люпина получено несколько сортов сладкого люпина, которые выращивают на корм скоту. Люпин, содержащий алкалоиды, для этой цели непригоден, поскольку животные его не едят.

Большое число мутантов известно у плодовых культур, которые используются как новые сорта или в гибридизации с другими формами. Один из наиболее известных спонтанных мутантов кукурузы opaque, отличающийся высоким содержанием аминокислоты лизина в зерне, используется для создания так называемых высоколизиновых гибридов кукурузы.

В последние десятилетия во многих странах мира развернуты работы по получению индуцированных мутантов. Индуцированные рентгеновыми лучами мутанты были выделены у многих злаков (ячменя, пшеницы, ржи и др.). Они отличаются не только повышенной урожайностью, но и укороченным побегом. Такие растения устойчивы к полеганию и имеют заметные преимущества при машинной уборке. Кроме того, короткая и прочная соломина позволяет вести дальнейшую селекцию на увеличение размера колоса и массы семян без опасения, что повышение урожая зерна приведет к полеганию растений.

Особенно успешно индуцированный мутагенез применяют в селекции микроорганизмов.

Основа успеха любой селекционной работы - генетическое разнообразие материала и методы селекции. Использование таких исходных материалов позволяет получать новые гибриды и сорта, с самыми разнообразными характеристиками и свойствами. Основы селекции заложили известнейшие ученые мира:

Н. К. Кольцов (создал основы для молекулярной генетики).

Н. И. Вавилов (открыл закон гомологических рядов);

И. В. Мичурин (вывел множество плодовых гибридов).

Основные методы селекции растений и животных были разработаны на основе всех предыдущих открытий и совершенствуются до сих пор. Селекционеры в своей работе используют различные способы селекции: инбридинг, искусственный мутагенез, полиплоидию, отдаленную гибридизацию. Ниже приведены наиболее часто применяемые способы выведения новых растений и пород животных.

Основные методы селекции растений: гибридизация и отбор. Перекрестно-опыляемые растения селекционируют путем тех особей, которые имеют желательные свойства. Для получения наиболее чистых линий, то есть генетической однородности сорта, используют индивидуальный отбор, в ходе которого путем самоопыления достигается получение потомства от единственной особи, обладающей всеми самыми лучшими признаками. Недостатком такого метода является то, что при этом нередко наблюдаются неблагоприятные проявления Основной причиной этого является переход большого числа генов в состояние гомозиготы. Со временем накопление рецессивных мутантных генов, переходящих в гомозиготное состояние, может вызвать неблагоприятные наследственные изменения. В природных условиях у самоопыляемого растения рецессивные гены переходят в состояние гомозиготы, и такое растение быстро погибает.

При использовании метода самоопыления часто снижается урожайность. Для ее повышения проводят перекрестное опыление разных самоопыляющихся линий растений и получают высокоурожайные гибриды. Такие методы селекции называются межлинейной гибридизацией. Самой высокой урожайностью обладают гибриды первого поколения. При этом наблюдается известный эффект гетерозиса, согласно которому при скрещивании «чистых» линий получаются мощные гибриды. Они устойчивы к неблагоприятным воздействиям, поскольку в них устранено вредное влияние рецессивных генов, а объединение сильных родительских растений усиливает эффект.

Нередко в селекции различных растений используется экспериментальная полиплоидия. Полученные таким путем растения обладают крупными размерами, дают хороший урожай и быстро растут. Получаются искусственные полиплоиды под воздействием химических веществ, разрушающих веретено деления. В результате этого удвоившиеся хромосомы остаются в одном ядре.

Новые сорта выводят и при помощи искусственного мутагенеза. Организм, который в результате мутации получил новые свойства, имеет слабую жизнеспособность, поэтому при отсеивается. Для селекции и эволюции новых сортов и пород необходимы редкие особи, имеющие нейтральные или благоприятные мутации.

Методы селекции животных практически не отличаются от основных методов селекции растений. Особенности работы с ними - их половое размножение и небольшое потомство. Отбор родителей и тип скрещивания проводятся с определенными целями, поставленными селекционером. Все животные получают оценку не только по своим внешним признакам, а и по качеству потомства и происхождению. Поэтому так важно знать их родословную. В селекции чаще всего применяют 2 способа скрещивания:

Инбридинг (близкородственное) - скрещиваются родители, сестры, братья. Такое скрещивание нельзя проводить бесконечно. Его используют, как правило, для улучшения свойств породы;

Аутбридинг (неродственное) - скрещивание представителей одной или разных пород и строгий отбор потомков с лучшими свойствами.

Отдаленная гибридизация животных значительно менее эффективна, чем гибридизация растений. Такие межвидовые гибриды часто оказываются бесплодными.

Селекция - наука о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. В основе селекции лежат такие методы, как гибридизация и отбор. Теоретической основой селекции является генетика.

Для успешного решения задач, стоящих перед селекцией, академик Н.И.Вавилов особо выделял значение:

1. Изучения сортового, видового и родового разнообразия интересующей нас культуры;

2. Влияния среды на развитие интересующих селекционера признаков;

3. Изучения наследственной изменчивости;

4. Знаний закономерностей наследования признаков при гибридизации;

5. Особенностей селекционного процесса для само- или перекрестноопылителей;

6. Стратегии искусственного отбора.

Породы, сорта, штаммы - искусственно созданные человеком популяции организмов с наследственно закрепленными особенностями: продуктивностью, морфологическими, физиологическими признаками.

Каждая порода животных, сорт растений, штамм микроорганизмов приспособлены к определенным условиям, поэтому в каждой зоне нашей страны имеются специализированные сортоиспытательные станции и племенные хозяйства для сравнения и проверки новых сортов и пород.

Для успешной работы селекционеру необходимо сортовое разнообразие исходного материала, с этой целью Н.И.Вавиловым была собрана коллекция сортов культурных растений и их диких предков со всего земного шара. К 1940 году во Всесоюзном институте растениеводства насчитывалось 300 тыс. образцов. Но с позиций лысенковщины, занявшей в то время руководящие позиции в биологической науке России и считавшей, что определяющую роль в создании новых форм играет окружающая среда, эта коллекция была не нужна. Работы по пополнению коллекции были прекращены. В настоящее время коллекция пополняется и является основой для работ по селекции любой культуры.

Н.И.Вавилов установил центры происхождения культурных растений, где находится наибольшее видовое и сортовое многообразие культурных растений.

Центры происхождения культурных растений (по Н.И.Вавилову).

Центры происхождения

Местоположение

Культивируемые растения

1. Южноазиатский тропический

2. Восточноазиатский

3. Юго-Западноазиат-ский

4. Средиземноморский

5. Абиссинский

6. Центральноамериканский

7. Южноамериканский

Тропическая Индия, Индокитай, о-ва Юго-Восточной Азии

Центральный и Восточный Китай, Япония, Корея, Тайвань

Малая Азия, Средняя Азия, Иран, Афганистан, Юго-Западная Индия

Страны по берегам Средиземного моря

Абиссинское нагорье Африки

Южная Мексика

Западное побережье Южной Америки

Рис, сахарный тростник, цитрусовые, баклажаны и др. (50% культурных растений)

Соя, просо, гречиха, плодовые и овощные культуры - слива, вишня и др. (20% культурных растений)

Пшеница, рожь, бобовые культуры, лен, конопля, репа, чеснок, виноград и др. (14% культурных растений)

Капуста, сахарная свекла, маслины, клевер (11% культурных растений)

Твердая пшеница, ячмень, кофейное дерево, бананы, сорго

Кукуруза, какао, тыква, табак, хлопчатник

Картофель, ананас, хинное дерево.

Наиболее богатыми по количеству культур являются древние центры цивилизации, именно там наиболее ранняя культура земледелия, более длительное время проводится искусственный отбор и селекция растений.

Классическими методами селекции растений были и остаются гибридизация и отбор. Различают две основные формы искусственного отбора: массовый и индивидуальный.

1. Массовый отбор применяют при селекции перекрестноопыляемых растений, таких, как рожь, кукуруза, подсолнечник. При этом выделяют группу растений, обладающих ценными признаками. В этом случае сорт представляет собой популяцию, состоящую из гетерозиготных особей, и каждое семя даже от одного материнского растения обладает уникальным генотипом. С помощью массового отбора сохраняются и улучшаются сортовые качества, но результаты отбора неустойчивы в силу случайного перекрестного опыления.

2. Индивидуальный отбор эффективен для самоопыляемых растений (пшеницы, ячменя, гороха). В этом случае потомство сохраняет признаки родительской формы, является гомозиготным и называется чистой линией. Чистая линия - потомство одной гомозиготной самоопыленной особи. У любой особи тысячи генов, и так как происходят мутационные процессы, то абсолютно гомозиготных особей в природе практически не бывает. Мутации чаще всего рецессивны. Под контроль естественного и искусственного отбора они попадают только тогда, когда переходят в гомозиготное состояние.

3. Инбридинг используют при самоопылении перекрестноопыляемых растений, например, для получения чистых линий кукурузы. При этом подбирают такие растения, гибриды которых дают максимальный эффект гетерозиса - жизненной силы, образуют початки более крупные, чем початки родительских форм. От них получают чистые линии - на протяжении ряда лет, производят принудительное самоопыление - срывают метелки с выбранных растений и, когда появляются рыльца пестиков, их опыляют пыльцой этого же растения. Изоляторами предохраняют соцветия от попадания чужой пыльцы. У гибридов многие рецессивные неблагоприятные гены при этом переходят в гомозиготное состояние, и это приводит к снижению их жизнеспособности, к депрессии. Затем скрещивают чистые линии между собой для получения гибридных семян, дающих эффект гетерозиса.

Эффект гетерозиса объясняется двумя основными гипотезами. Гипотеза доминирования предполагает, что эффект гетерозиса зависит от количества доминантных генов в гомозиготном или гетерозиготном состоянии. Чем больше в генотипе генов в доминантном состоянии - тем больший эффект гетерозиса, и первое гибридное поколение дает прибавку урожая до 30% (рис. 339).

Р ААbbCCdd x aaBBccDD F 1 AaBbCcDd

Гипотеза сверхдоминирования объясняет явление гетерозиса эффектом сверхдоминирования: иногда гетерозиготное состояние по одному или нескольким генам дает гибриду превосходство над родительскими формами по массе и продуктивности.

Но начиная со второго поколения эффект гетерозиса затухает, так как часть генов переходит в гомозиготное состояние.

4. Перекрестное опыление самоопылителей дает возможность сочетать свойства различных сортов. Рассмотрим, как это практически выполняется при создании новых сортов пшеницы. У цветков растения одного сорта удаляются пыльники, рядом в банке с водой ставится растение другого сорта, и растения двух сортов накрываются общим изолятором. В результате получают гибридные семена, сочетающие нужные селекционеру признаки разных сортов.

5. Очень перспективен метод получения полиплоидов, у растений полиплоиды обладают большей массой вегетативных органов, имеют более крупные плоды и семена. Многие культуры представляют собой естественные полиплоиды: пшеница, картофель, выведены сорта полиплоидной гречихи, сахарной свеклы.

Виды, у которых кратно умножен один и тот же геном, называются аутополиплоидами. Классическим способом получения полиплоидов является обработка проростков колхицином. Это вещество блокирует образование микротрубочек веретена деления при митозе, в клетках удваивается набор хромосом, клетки становится тетраплоидными (рис. 340).

6. Отдаленная гибридизация - скрещивание растений, относящихся к разным видам. Но отдаленные гиб

риды обычно стерильны, так как у них нарушается мейоз (два гаплоидных набора хромосом разных видов не конъюгируют), и не образуются гаметы.

В 1924 году советский ученый Г.Д.Карпеченко получил плодовитый межродовой гибрид. Он скрестил редьку (2n = 18 редечных хромосом) и капусту (2n = 18 капустных хромосом). У гибрида в диплоидном наборе было 18 хромосом: 9 редечных и 9 капустных, но при мейозе редечные и капустные хромосомы не конъюгировали, гибрид был стерильным.

С помощью колхицина Г.Д.Карпеченко удалось удвоить хромосомный набор гибрида, полиплоид стал иметь 36 хромосом, при мейозе редечные (9 + 9) хромосомы конъюгировали с редечными, капустные (9 + 9) с капустными.

Плодовитость была восстановлена. Таким способом были получены пшенично-ржаные гибриды (тритикале), (рис. 341) пшенично-пырейные гибриды и др. Виды, у которых произошло объединение разных геномов в одном организме, а затем их кратное увеличение, называются аллополиплоидами.

7. Использование соматических мутаций применимо для селекции вегетативно размножающихся растений, что использовал в своей работе еще И.В.Мичурин. С помощью вегетативного размножения можно сохранить полезную соматическую мутацию. Кроме того, только с помощью вегетативного размножения сохраняются свойства многих сортов плодово-ягодных культур.

8. Экспериментальный мутагенез основан на открытии воздействия различных излучений для получения мутаций и на использование химических мутагенов. Мутагены позволяют получить большой спектр разнообразных мутаций, сейчас в мире созданы более тысячи сортов, ведущих родословную от отдельных мутантных растений, полученных после воздействия мутагенами.

Многие методы селекции растений были предложены И.В.Мичуриным. С помощью метода ментора И.В.Мичурин добивался изменения свойств гибрида в нужную сторону. Например, если у гибрида нужно было улучшить вкусовые качества, в его крону прививались черенки с родительского организма, имеющего хорошие вкусовые качества; или гибридное растение прививали на подвой, в сторону которого нужно было изменить качества гибрида. И.В.Мичурин указывал на возможность управления доминированием определенных признаков при развитии гибрида. Для этого на ранних стадиях развития необходимо воздействие определенными внешними факторами. Например, если гибриды выращивать в открытом грунте, на бедных почвах, повышается их морозостойкость.

Основные методы селекции животных

Создание пород домашних животных началось вслед за их приручением и одомашниванием, которое началось 10-12 тыс. лет назад. Содержание в неволе снижает действие стабилизирующей формы естественного отбора. Различные формы искусственного отбора (сначала бессознательный, а затем методический) приводят к созданию всего многообразия пород домашних животных.

В селекции животных, по сравнению с селекцией растений, есть ряд особенностей. Во-первых, для животных характерно в основном половое размножение, поэтому любая порода является сложной гетерозиготной системой. Оценка качеств самцов, которые внешне у них не проявляются (яйценоскость, жирномолочность), оцениваются по потомству и родословной. Во-вторых, у них часто поздняя половозрелость, смена поколений происходит через несколько лет. В-третьих, потомство немногочисленное.

Основными методами селекции животных являются гибридизация и отбор. Различают те же методы скрещивания - близкородственное скрещивание, инбридинг, и неродственное - аутбридинг. Инбридинг, как и у растений, приводит к депрессии. Отбор у животных проводится по экстерьеру (определенным параметрам внешнего строения), т.к. именно он является критерием породы.

1. Внутрипородное разведение направлено на сохранение и улучшение породы. Практически выражается в отборе лучших производителей, выбраковке особей, не отвечающих требованиям породы. В племенных хозяйствах ведутся племенные книги, отражающие родословную, экстерьер и продуктивность животных за много поколений.

2. Межпородное скрещивание используют для создания новой породы. При этом часто проводят близкородственное скрещивание, родителей скрещивают с потомством, братьев с сестрами, это помогает получить большее число особей, обладающих нужными свойствами. Инбридинг сопровождается жестким постоянным отбором, обычно получают несколько линий, затем производят скрещивание разных линий.

Хорошим примером может служить выведенная академиком М.Ф.Ивановым порода свиней - украинская белая степная. При создании этой породы использовались свиноматки местных украинских свиней с небольшой массой и невысоким качеством мяса и сала, но хорошо приспособленных к местным условиям. Самцами-производителями были хряки белой английской породы. Гибридное потомство вновь было скрещено с английскими хряками, в нескольких поколениях применялся инбридинг, были получены чистые линии, при скрещивании которых получены родоначальники новой породы, которые по качеству мяса и массе не отличались от английской породы, по выносливости - от украинских свиней.

3. Использование эффекта гетерозиса . Часто при межпородном скрещивании в первом поколении проявляется эффект гетерозиса, гетерозисные животные отличаются скороспелостью и повышенной мясной продуктивностью. Например, при скрещивании двух мясных пород кур получают гетерозисных бройлерных кур, при скрещивании беркширской и дюрокджерсейской пород свиней получают скороспелых свиней с большой массой и хорошим качеством мяса и сала.

4. Испытание по потомству проводят для подбора самцов, у которых не проявляются некоторые качества (молочность и жирномолочность быков, яйценоскость петухов). Для этого производителей-самцов скрещивают с несколькими самками, оценивают продуктивность и другие качества дочерей, сравнивая их с материнскими и со среднепородными.

5. Искусственное осеменение используют для получения потомства от лучших самцов производителей, тем более что половые клетки можно хранить при температуре жидкого азота любое время.

6. С помощью гормональной суперовуляции и трансплантации у выдающихся коров можно забирать десятки эмбрионов в год, а затем имплантировать их в других коров, эмбрионы так же хранятся при температуре жидкого азота. Это дает возможность увеличить в несколько раз число потомков от выдающихся производителей.

7. Отдаленная гибридизация , межвидовое скрещивание, известно с древних времен. Чаще всего межвидовые гибриды стерильны, у них нарушается мейоз, что приводит к нарушению гаметогенеза. С глубокой древности человек использует гибрид кобылицы с ослом - мула, который отличается выносливостью и долгожительством. Но иногда гаметогенез у отдаленных гибридов протекает нормально, что позволило получить новые ценные породы животных. Примером являются архаромериносы, которые, как и архары, могут пастись высоко в горах, а, как мериносы, дают хорошую шерсть. Получены плодовитые гибриды от скрещивания местного крупного рогатого скота с яками и зебу. При скрещивании белуги и стерляди получен плодовитый гибрид - бестер, хорька и норки - хонорик, продуктивен гибрид между карпом и карасем.

Селекция микроорганизмов. Биотехнология

Традиционная селекция микроорганизмов (в основном бактерий и грибов) основана на экспериментальном мутагенезе и отборе наиболее продуктивных штаммов. Но и здесь есть свои особенности. Геном бактерий гаплоидный, любые мутации проявляются уже в первом поколении. Хотя вероятность естественного возникновения мутации у микроорганизмов такая же, как и всех других организмов (1 мутация на 1 млн. особей по каждому гену), но очень высокая интенсивность размножения дает возможность найти полезную мутацию по интересующему исследователя гену.

В результате искусственного мутагенеза и отбора была повышена продуктивность штаммов гриба пеницилла более чем в 1000 раз. Продукты микробиологической промышленности используются в хлебопечении, пивоварении, виноделии, приготовлении многих молочных продуктов. С помощью микробиологической промышленности получают антибиотики, аминокислоты, белки, гормоны, различные ферменты, витамины и многое другое.

Микроорганизмы используют для биологической очистки сточных вод, улучшений качеств почвы. В настоящее время разработаны методы получения марганца, меди, хрома при разработке отвалов старых рудников с помощью бактерий, где обычные методы добычи экономически невыгодны.

Биотехнология - использование живых организмов и их биологических процессов в производстве необходимых человеку веществ. Объектами биотехнологии являются бактерии, грибы, клетки растительных и животных тканей. Их выращивают на питательных средах в специальных биореакторах.

Новейшими методами селекции микроорганизмов, растений и животных являются клеточная, хромосомная и генная инженерия.

Генная инженерия


Методы основаны на выделении нужного гена из генома одного организма и введении его в геном другого организма. «Вырезании» генов проводят с помощью специальных «генетических ножниц», ферментов - рестриктаз, затем ген вшивают в вектор - плазмиду, с помощью которого ген вводится в бактерию (рис. 342). Вшивание осуществляется с помощью другой группы ферментов - лигаз. Причем вектор должен содержать все необходимое для управления работой этого гена - промотор, терминатор, ген-оператор и ген-регулятор. Кроме того, вектор должен содержать маркерные гены, которые придают клетке-реципиенту новые свойства, позволяющие отличить эту клетку от исходных клеток. Затем вектор вводится в бактерию, и на последнем этапе отбираются те бактерии, в которых введенные гены успешно работают.

Излюбленный объект генных инженеров - кишечная палочка, бактерия, живущая в кишечнике человека. Именно с ее помощью получают гормон роста - соматотропин, гормон инсулин, который раньше получали из поджелудочных желез коров и свиней, белок интерферон, помогающий справиться с вирусной инфекцией.

Второй путь - синтез гена искусственным путем. Для этого используются иРНК, с помощью фермента обратная транскриптаза на иРНК синтезируется ДНК.

Методы хромосомной инженерии.

Одна группа методов основана на введении в генотип растительного организма пары чужих гомологичных хромосом, контролирующих развитие нужных признаков, или замещении одной пары гомологичных хромосом на другую. На этом основаны методы получения замещенных и дополненных линий , с помощью которых в растениях собираются признаки, приближающие к созданию «идеального сорта».

Очень перспективен метод гаплоидов , основанный на выращивании гаплоидных растений с последующим удвоением хромосом. Например, выращивают из пыльцевых зерен кукурузы гаплоидные растения, содержащие 10 хромосом, затем хромосомы удваивают и получают диплоидные (10 пар хромосом), полностью гомозиготные растения всего за 2 - 3 года вместо 6 - 8 летнего инбридинга. Сюда же можно отнести и получение полиплоидных растений в результате кратного увеличения хромосом.

Методы клеточной инженерии.

Выращивание клеточных культур . Метод связан с культивированием отдельных клеток в питательных средах, где они образуют клеточные культуры. Оказалось, что клетки растений и животных, помещенных в питательную среду, содержащую все необходимые для жизнедеятельности вещества, способны делиться. Клетки растений обладают еще и свойством тотипотентности, то есть при определенных условиях они способны сформировать полноценное растение. Это дает возможность с помощью клеточных культур получать ценные вещества. Например, культура клеток женьшеня нарабатывает биологически активные вещества. С другой стороны, можно размножить эти растения в пробирках, помещая клетки в определенные питательные среды. Так можно размножать редкие и ценные растения. Это позволяет создавать безвирусные сорта картофеля и других растений.

Гибридизация клеток. Например, разработана методика гибридизации протопластов соматических клеток. Удаляются клеточные оболочки и сливаются протопласты клеток организмов, относящихся к разным видам - картофеля и томата, яблони и вишни. Перспективно создание гибридом, при котором осуществляется гибридизация различных клеток. Например, лимфоциты, образующие антитела, гибридизируются с раковыми клетками. В результате гибридомы нарабатывают антитела, как лимфоциты, и «бессмертны», как раковые клетки. Следовательно, они обладают возможностью неограниченного размножения в культуре.

Клонирование. Интересен метод пересадки ядер соматических клеток в яйцеклетки. Таким способом возможно клонирование животных, получение генетических копий от одного организма. В настоящее время получены клонированные лягушки, получены первые результаты клонирования млекопитающих.

Создание химерных животных . Возможно слияние эмбрионов на ранних стадиях, таким способом были получены химерные мыши при слиянии эмбрионов белых и черных мышей, химерное животное овца-коза.